Simplified rat intubation using a new oropharyngeal intubation wedge

2000 ◽  
Vol 89 (5) ◽  
pp. 1766-1770 ◽  
Author(s):  
I-Ming Jou ◽  
Ya-Ting Tsai ◽  
Ching-Lin Tsai ◽  
Ming-Ho Wu ◽  
Han-Yu Chang ◽  
...  

Our new oropharyngeal intubation wedge made from a plastic 3-ml syringe has been used successfully for the expansion of the oropharyngeal cavity and visualization of vocal cords for endotracheal intubation in the rat. All the animals we used tolerated the intubation and ventilation procedures in a series of experiments. After the proper setting of the respirator, vital signs were maintained within normal range. The postmortem examination and measurements in the upper airway confirmed that the endotracheal tube was properly sited and also demonstrated the precise size of the device that should be used. The main advantages of this method include low cost, simplicity, and reliability. Furthermore, because no expensive, elaborate, difficult-to-operate, or hard-to-get special equipment is needed, this technique can be used in every laboratory.

Author(s):  
P.Venu Gopala Rao ◽  
Eslavath Raja ◽  
Ramakrishna Gandi ◽  
G. Ravi Kumar

IoT (Internet of Things) has become most significant area of research to design an efficient data enabled services with the help of sensors. In this paper, a low-cost system design for e-healthcare service to process the sensitive health data is presented. Vital signs of the human body are measured from the patient location and shared with a registered medical professional for consultation. Temperature and heart rate are the major signals obtained from a patient for the initial build of the system. Data is sent to a cloud server where processing and analysis is provided for the medical professional to analyze. Secure transmission and dissemination of data through the cloud server is provided with an authentication system and the patient could be able to track his data through a smart phone on connecting to the cloud server. A prototype of the system along with its design parameters has been discussed.


2020 ◽  
pp. 014556132091910
Author(s):  
Lauren E. Miller ◽  
Adva Buzi ◽  
Ashley Williams ◽  
Rachel S. Rogers ◽  
Angel G. Ortiz ◽  
...  

Introduction: Telemedicine is an increasingly prevalent component of medical practice. In otolaryngology, there is the potential for telemedicine services to be performed in conjunction with device use, such as with a nasolaryngoscope. This study evaluates the reliability of remote examinations of the upper airway through an iPhone recording using a coupling device attached to a nasopharyngolaryngoscope (NPL). Methods: A prospective, blinded study was performed for pediatric patients requiring an NPL during an office visit. The NPL was performed using a coupling device attached to a smartphone to record the examination. A second, remote otolaryngologist then evaluated the recorded examination. Both otolaryngologists evaluated findings of anatomic sites including nasopharynx, oropharynx, base of tongue, larynx including subsites of epiglottis, arytenoids, aryepiglottic folds, false vocal cords, true vocal cords, patency of airway, and diagnostic impression, all of which were documented through a survey. Results of the survey were evaluated through inter-rater agreement using the κ statistic. Results: Forty-five patients underwent an NPL, all of which were included in the study. The average age was 4.9 years. The most common complaint requiring NPL was noisy breathing (n = 16). The inter-rater agreement for overall diagnosis was 0.74 with 80% percent agreement, rated as “good.” Other anatomic subsites with “good” or better inter-rater agreement were nasopharynx (0.75), oropharynx (0.75), and true vocal cords (0.71), with strong percentage agreement of 89%, 91%, and 87%, respectively. Both users of the adaptor found the recording setup to run smoothly. Conclusion: A telemedicine device for NPL use demonstrates strong diagnostic accuracy across providers and good overall evaluation. It holds potential for use in remote settings.


2014 ◽  
Vol 80 (3) ◽  
pp. 218
Author(s):  
N. Lo ◽  
A. Navlekar ◽  
E. Palmgren ◽  
R. Rekhi ◽  
F. Ussher ◽  
...  

2020 ◽  
Vol 15 ◽  
pp. 155892502097726
Author(s):  
Wei Wang ◽  
Zhiqiang Pang ◽  
Ling Peng ◽  
Fei Hu

Performing real-time monitoring for human vital signs during sleep at home is of vital importance to achieve timely detection and rescue. However, the existing smart equipment for monitoring human vital signs suffers the drawbacks of high complexity, high cost, and intrusiveness, or low accuracy. Thus, it is of great need to develop a simplified, nonintrusive, comfortable and low cost real-time monitoring system during sleep. In this study, a novel intelligent pillow was developed based on a low-cost piezoelectric ceramic sensor. It was manufactured by locating a smart system (consisting of a sensing unit i.e. a piezoelectric ceramic sensor, a data processing unit and a GPRS communication module) in the cavity of the pillow made of shape memory foam. The sampling frequency of the intelligent pillow was set at 1000 Hz to capture the signals more accurately, and vital signs including heart rate, respiratory rate and body movement were derived through series of well established algorithms, which were sent to the user’s app. Validation experimental results demonstrate that high heart-rate detection accuracy (i.e. 99.18%) was achieved in using the intelligent pillow. Besides, human tests were conducted by detecting vital signs of six elder participants at their home, and results showed that the detected vital signs may well predicate their health conditions. In addition, no contact discomfort was reported by the participants. With further studies in terms of validity of the intelligent pillow and large-scale human trials, the proposed intelligent pillow was expected to play an important role in daily sleep monitoring.


2011 ◽  
Vol 36 (4) ◽  
pp. 2599-2607 ◽  
Author(s):  
Kuo-Yi Chen ◽  
Fuh-Gwo Chen ◽  
Ting-Wei Hou
Keyword(s):  
Low Cost ◽  

2005 ◽  
Vol 103 (3) ◽  
pp. 484-488 ◽  
Author(s):  
Ronald S. Litman ◽  
Nicole Wake ◽  
Lai-Ming Lisa Chan ◽  
Joseph M. McDonough ◽  
Sanghun Sin ◽  
...  

Background Lateral positioning decreases upper airway obstruction in paralyzed, anesthetized adults and in individuals with sleep apnea during sleep. The authors hypothesized that lateral positioning increases upper airway cross-sectional area and total upper airway volume when compared with the supine position in sedated, spontaneously breathing children. Methods Children aged 2-12 yr requiring magnetic resonance imaging examination of the head or neck region using deep sedation with propofol were studied. Exclusion criteria included any type of anatomical or neurologic entity that could influence upper airway shape or size. T1 axial scans of the upper airway were obtained in the supine and lateral positions, with the head and neck axes maintained neutral. Using software based on fuzzy connectedness segmentation (3D-VIEWNIX; Medical Imaging Processing Group, University of Pennsylvania, Philadelphia, PA), the magnetic resonance images were processed and segmented to render a three-dimensional reconstruction of the upper airway. Total airway volumes and cross-sectional areas were computed between the nasal vomer and the vocal cords. Two-way paired t tests were used to compare airway sizes between supine and lateral positions. Results Sixteen of 17 children analyzed had increases in upper airway total volume. The total airway volume (mean +/- SD) was 6.0 +/- 2.9 ml in the supine position and 8.7 +/- 2.5 ml in the lateral position (P < 0.001). All noncartilaginous areas of the upper airway increased in area in the lateral compared with the supine position. The region between the tip of the epiglottis and vocal cords demonstrated the greatest relative percent change. Conclusions The upper airway of a sedated, spontaneously breathing child widens in the lateral position. The region between the tip of the epiglottis and the vocal cords demonstrates the greatest relative percent increase in size.


2020 ◽  
Author(s):  
Alain Townsend ◽  
Pramila Rijal ◽  
Julie Xiao ◽  
Tiong Kit Tan ◽  
Kuan-Ying A Huang ◽  
...  

ABSTRACTSerological detection of antibodies to SARS-CoV-2 is essential for establishing rates of seroconversion in populations, detection of seroconversion after vaccination, and for seeking evidence for a level of antibody that may be protective against COVID-19 disease. Several high-performance commercial tests have been described, but these require centralised laboratory facilities that are comparatively expensive, and therefore not available universally. Red cell agglutination tests have a long history in blood typing, and general serology through linkage of reporter molecules to the red cell surface. They do not require special equipment, are read by eye, have short development times, low cost and can be applied as a Point of Care Test (POCT). We describe a red cell agglutination test for the detection of antibodies to the SARS-CoV-2 receptor binding domain (RBD). We show that the Haemagglutination Test (“HAT”) has a sensitivity of 90% and specificity of 99% for detection of antibodies after a PCR diagnosed infection. The HAT can be titrated, detects rising titres in the first five days of hospital admission, correlates well with a commercial test that detects antibodies to the RBD, and can be applied as a point of care test. The developing reagent is composed of a previously described nanobody to a conserved glycophorin A epitope on red cells, linked to the RBD from SARS-CoV-2. It can be lyophilised for ease of shipping. We have scaled up production of this reagent to one gram, which is sufficient for ten million tests, at a cost of ∼0.27 UK pence per test well. Aliquots of this reagent are ready to be supplied to qualified groups anywhere in the world that need to detect antibodies to SARS-CoV-2, but do not have the facilities for high throughput commercial tests.


2020 ◽  
Vol 20 (21) ◽  
pp. 13417-13424
Author(s):  
Jake P. Rowe ◽  
Andrew T. Lambe ◽  
William H. Brune

Abstract. Oxidation flow reactors (OFRs) complement environmental smog chambers as a portable, low-cost technique for exposing atmospheric compounds to oxidants such as ozone (O3), nitrate (NO3) radicals, and hydroxyl (OH) radicals. OH is most commonly generated in OFRs via photolysis of externally added O3 at λ=254 nm (OFR254) or combined photolysis of O2 and H2O at λ=185 nm plus photolysis of O3 at λ=254 nm (OFR185) using low-pressure mercury (Hg) lamps. Whereas OFR254 radical generation is influenced by [O3], [H2O], and photon flux at λ=254 nm (I254), OFR185 radical generation is influenced by [O2], [H2O], I185, and I254. Because the ratio of photon fluxes, I185:I254, is OFR-specific, OFR185 performance varies between different systems even when constant [H2O] and I254 are maintained. Thus, calibrations and models developed for one OFR185 system may not be applicable to another. To investigate these issues, we conducted a series of experiments in which I185:I254 emitted by Hg lamps installed in an OFR was systematically varied by fusing multiple segments of lamp quartz together that either transmitted or blocked λ=185 nm radiation. Integrated OH exposure (OHexp) values achieved for each lamp type were obtained using the tracer decay method as a function of UV intensity, humidity, residence time, and external OH reactivity (OHRext). Following previous related studies, a photochemical box model was used to develop a generalized OHexp estimation equation as a function of [H2O], [O3], and OHRext that is applicable for I185:I254≈0.001 to 0.1.


2020 ◽  
Vol 12 (2) ◽  
pp. 102-118
Author(s):  
Alexandre dos Santos Gonsalves ◽  
Robson Augusto Siscoutto

The health monitoring system has become indispensable in the treatment of patients, especially for those who have chronic illnesses and need real-time observation from doctors and specialists. This article presents a low-cost wireless solution for monitoring, in real time, vital signs such as cardiac beats, breathing and blood pressure, collecting and sending data to a remote computer. During development, a wireless sensor box was created, using Arduino Nano and bluetooh sensors, where this box is attached to the patient's body, respecting the patient's flexibility and mobility during physical exercises. During the monitoring, the captured data is transmitted via the bluetooh network. The box uses a battery for its food. After the evaluation, the solution obtained a performance and correctness of the data close to 100%, being considered fit for use. Several experiments were carried out to analyze, quantify and qualify the solution, being discussed and presented in this paper.


2021 ◽  
Author(s):  
Raphael Kazidule Kayambankadzanja ◽  
Carl Otto Schell ◽  
Isaac Mbingwani ◽  
Samson Kwazizira Mndolo ◽  
Markus Castegren ◽  
...  

AbstractBackgroundCritical illness is common throughout the world and has been the focus of a dramatic increase in attention in the COVID-19 pandemic. Severely deranged vital signs can identify critical illness, are simple to check and treatments that aim to correct derangements are established, basic and low-cost. The aim of the study was to estimate the unmet need of essential treatments for severely deranged vital signs in all adults admitted to hospitals in Malawi.MethodsWe conducted a cross-sectional study with follow-up of adult hospitalized patients in Malawi. All in-patients aged ≥18 on single days Queen Elizabeth Central Hospital (QECH) and Chiradzulu District Hospital (CDH) were screened.. Patients with hypoxia (oxygen saturation <90%), hypotension (systolic blood pressure <90mmHg) and reduced conscious level (Glasgow Coma Score <9) were included in the study. The a-priori defined essential treatments were oxygen therapy for hypoxia, intravenous fluid for hypotension and an action to protect the airway for reduced consciousness (placing the patient in the lateral position, insertion of an oropharyngeal airway or endo-tracheal tube or manual airway protection).ResultsOf the 1135 hospital in-patients screened, 45 (4.0%) had hypoxia, 103 (9.1%) had hypotension, and 17 (1.5%) had a reduced conscious level. Of those with hypoxia, 40 were not receiving oxygen (88.9%). Of those with hypotension, 94 were not receiving intravenous fluids (91.3%). Of those with a reduced conscious level, nine were not receiving an action to protect the airway (53.0%).ConclusionThere was a large unmet need of essential treatments for critical illness in two hospitals in Malawi.


Sign in / Sign up

Export Citation Format

Share Document