scholarly journals Primary ciliary dyskinesia: evaluation using cilia beat frequency assessment via spectral analysis of digital microscopy images

2011 ◽  
Vol 111 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Mary A. K. Olm ◽  
João E. Kögler ◽  
Mariangela Macchione ◽  
Amelia Shoemark ◽  
Paulo H. N. Saldiva ◽  
...  

Ciliary beat frequency (CBF) measurements provide valuable information for diagnosing of primary ciliary dyskinesia (PCD). We developed a system for measuring CBF, used it in association with electron microscopy to diagnose PCD, and then analyzed characteristics of PCD patients. 1 The CBF measurement system was based on power spectra measured through digital imaging. Twenty-four patients suspected of having PCD (age 1–19 yr) were selected from a group of 75 children and adolescents with pneumopathies of unknown causes. Ten healthy, nonsmoking volunteers (age ≥17 yr) served as a control group. Nasal brush samples were collected, and CBF and electron microscopy were performed. PCD was diagnosed in 12 patients: 5 had radial spoke defects, 3 showed absent central microtubule pairs with transposition, 2 had outer dynein arm defects, 1 had a shortened outer dynein arm, and 1 had a normal ultrastructure. Previous studies have reported that the most common cilia defects are in the dynein arm. As expected, the mean CBF was higher in the control group ( P < 0.001) and patients with normal ultrastructure ( P < 0.002), than in those diagnosed with cilia ultrastructural defects (i.e., PCD patients). An obstructive ventilatory pattern was observed in 70% of the PCD patients who underwent pulmonary function tests. All PCD patients presented bronchial wall thickening on chest computed tomography scans. The protocol and diagnostic techniques employed allowed us to diagnose PCD in 16% of patients in this study.

2021 ◽  
Vol 7 (1) ◽  
pp. 00792-2020
Author(s):  
Pedro Sampaio ◽  
Mónica Ferro da Silva ◽  
Inês Vale ◽  
Mónica Roxo-Rosa ◽  
Andreia Pinto ◽  
...  

Evaluation of ciliary beat frequency (CBF) performed by high-speed videomicroscopy analysis (HVMA) is one of the techniques required for the correct diagnosis of primary ciliary dyskinesia (PCD). Currently, due to lack of open-source software, this technique is widely performed by visually counting the ciliary beatings per a given time-window. Our aim was to generate open-source, fast and intuitive software for evaluating CBF, validated in Portuguese PCD patients and healthy volunteers.Nasal brushings collected from 17 adult healthy volunteers and 34 PCD-referred subjects were recorded using HVMA. Evaluation of CBF was compared by two different methodologies: the new semi-automated computer software CiliarMove and the manual observation method using slow-motion movies. Clinical history, nasal nitric oxide and transmission electron microscopy were performed for diagnosis of PCD in the patient group. Genetic analysis was performed in a subset (n=8) of suspected PCD patients.The correlation coefficient between the two methods was R2=0.9895. The interval of CBF values obtained from the healthy control group (n=17) was 6.18–9.17 Hz at 25°C. In the PCD-excluded group (n=16), CBF ranged from 6.84 to 10.93 Hz and in the PCD group (n=18), CBF ranged from 0 to 14.30 Hz.We offer an automated open-source programme named CiliarMove, validated by the manual observation method in a healthy volunteer control group, a PCD-excluded group and a PCD-confirmed group. In our hands, comparisons between CBF intervals alone could discern between healthy and PCD groups in 78% of the cases.


2019 ◽  
Vol 57 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Sylvain Blanchon ◽  
Marie Legendre ◽  
Mathieu Bottier ◽  
Aline Tamalet ◽  
Guy Montantin ◽  
...  

BackgroundPrimary ciliary dyskinesia (PCD) is a rare genetic disorder resulting in abnormal ciliary motility/structure, extremely heterogeneous at genetic and ultrastructural levels. We aimed, in light of extensive genotyping, to identify specific and quantitative ciliary beating anomalies, according to the ultrastructural phenotype.MethodsWe prospectively included 75 patients with PCD exhibiting the main five ultrastructural phenotypes (n=15/group), screened all corresponding PCD genes and measured quantitative beating parameters by high-speed video-microscopy (HSV).ResultsSixty-eight (91%) patients carried biallelic mutations. Combined outer/inner dynein arms (ODA/IDA) defect induces total ciliary immotility, regardless of the gene involved. ODA defect induces a residual beating with dramatically low ciliary beat frequency (CBF) related to increased recovery stroke and pause durations, especially in case of DNAI1 mutations. IDA defect with microtubular disorganisation induces a low percentage of beating cilia with decreased beating angle and, in case of CCDC39 mutations, a relatively conserved mean CBF with a high maximal CBF. Central complex defect induces nearly normal beating parameters, regardless of the gene involved, and a gyrating motion in a minority of ciliated edges, especially in case of RSPH1 mutations. PCD with normal ultrastructure exhibits heterogeneous HSV values, but mostly an increased CBF with an extremely high maximal CBF.ConclusionQuantitative HSV analysis in PCD objectives beating anomalies associated with specific ciliary ultrastructures and genotypes. It represents a promising approach to guide the molecular analyses towards the best candidate gene(s) to be analysed or to assess the pathogenicity of the numerous sequence variants identified by next-generation-sequencing.


1997 ◽  
Vol 106 (10) ◽  
pp. 854-858 ◽  
Author(s):  
André Coste ◽  
Marie-Claude Millepied ◽  
Catherine Chapelin ◽  
Philippe Reinert ◽  
Françoise Poron ◽  
...  

The goal of the study was to evaluate the incidence of primary ciliary dyskinesia (PCD) in children suffering from recurrent respiratory tract infections (RRIs) by means of a noninvasive method. Respiratory ciliated cells were collected by nasal brushing in 118 children (4.6 ± 2.5 years) with RRIs. The ciliary beat frequency (CBF) was measured with a stroboscopic method, and when the CBF was abnormal, the ciliary ultrastructure was analyzed by a quantitative method. The CBF could be measured in 106 patients (90%) and was abnormal in 15 patients. The ciliary ultrastructure was found to be abnormal in 11 of 15 patients: PCD was diagnosed in 6 cases, and acquired ciliary defects were observed in the remaining 5 patients. Our conclusion, that PCD is rare but not exceptional (5.6%) in children with RRIs, justifies the systematic investigation of ciliated cells in such patients. For this purpose, nasal brushing can be used to sample ciliated cells even in young children.


1998 ◽  
Vol 12 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Mark Jorissen

Mucociliary transport is one of the most important defense mechanisms of the airway. Mucociliary transport time or rate, as measured using the saccharin test or the radioisotope technique, respectively, is clinically the most relevant parameter, although subject to large intra- and interindividual variability. There is no correlation between mucociliary transport in vivo and ciliary beat frequency ex vivo. Preliminary evidence demonstrates that mucociliary transport correlates with ciliary structure and orientation as investigated with transmission and scanning electron microscopy. A correlation is presented between ciliary beat frequency and secondary ciliary abnormalities. This correlation can best be described according to the logistic sigmoid model (r = 0.69). Based on these functional data, an ultrastructural distinction is proposed among normal (less than 5%), light (5 to 15%), moderate (15 to 25%), and severe (more than 25%) secondary ciliary dyskinesia.


2010 ◽  
Vol 189 (3) ◽  
pp. 601-612 ◽  
Author(s):  
Christen G. DiPetrillo ◽  
Elizabeth F. Smith

For all motile eukaryotic cilia and flagella, beating is regulated by changes in intraciliary calcium concentration. Although the mechanism for calcium regulation is not understood, numerous studies have shown that calmodulin (CaM) is a key axonemal calcium sensor. Using anti-CaM antibodies and Chlamydomonas reinhardtii axonemal extracts, we precipitated a complex that includes four polypeptides and that specifically interacts with CaM in high [Ca2+]. One of the complex members, FAP221, is an orthologue of mammalian Pcdp1 (primary ciliary dyskinesia protein 1). Both FAP221 and mammalian Pcdp1 specifically bind CaM in high [Ca2+]. Reduced expression of Pcdp1 complex members in C. reinhardtii results in failure of the C1d central pair projection to assemble and significant impairment of motility including uncoordinated bends, severely reduced beat frequency, and altered waveforms. These combined results reveal that the central pair Pcdp1 (FAP221) complex is essential for control of ciliary motility.


1998 ◽  
Vol 12 (3) ◽  
pp. 199-202 ◽  
Author(s):  
Stephen B. Kupferberg ◽  
John P. Bent ◽  
Edward S. Porubsky

Diagnosing Primary Ciliary Dyskinesia can often be difficult. Physical findings suggest the disease, but definitive diagnosis should be made with a ciliary biopsy. Twenty biopsies were obtained from 16 patients and all underwent both light and electron microscopic examination. In 8/20 (40%) there was a discrepancy between the different imaging techniques. Therefore, light microscopy should be used to assess adequacy of biopsy and motion of the cilia along with electron microscopy to examine ultrastructure.


Sign in / Sign up

Export Citation Format

Share Document