ciliary ultrastructure
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 2)

Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1540
Author(s):  
Loretta Müller ◽  
Sibel T. Savas ◽  
Stefan A. Tschanz ◽  
Andrea Stokes ◽  
Anaïs Escher ◽  
...  

Primary ciliary dyskinesia (PCD) is a rare genetic disease characterized by dyskinetic cilia. Respiratory symptoms usually start at birth. The lack of diagnostic gold standard tests is challenging, as PCD diagnostics requires different methods with high expertise. We founded PCD-UNIBE as the first comprehensive PCD diagnostic center in Switzerland. Our diagnostic approach includes nasal brushing and cell culture with analysis of ciliary motility via high-speed-videomicroscopy (HSVM) and immunofluorescence labeling (IF) of structural proteins. Selected patients undergo electron microscopy (TEM) of ciliary ultrastructure and genetics. We report here on the first 100 patients assessed by PCD-UNIBE. All patients received HSVM fresh, IF, and cell culture (success rate of 90%). We repeated the HSVM with cell cultures and conducted TEM in 30 patients and genetics in 31 patients. Results from cell cultures were much clearer compared to fresh samples. For 80 patients, we found no evidence of PCD, 17 were diagnosed with PCD, two remained inconclusive, and one case is ongoing. HSVM was diagnostic in 12, IF in 14, TEM in five and genetics in 11 cases. None of the methods was able to diagnose all 17 PCD cases, highlighting that a comprehensive approach is essential for an accurate diagnosis of PCD.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Fiona Haward ◽  
Magdalena M Maslon ◽  
Patricia L Yeyati ◽  
Nicolas Bellora ◽  
Jan Niklas Hansen ◽  
...  

Shuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells and tissues derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1363
Author(s):  
Andrea Felšöová ◽  
Tibor Sloboda ◽  
Lukáš Hudec ◽  
Miroslav Koblížek ◽  
Petr Pohunek ◽  
...  

The ciliary ultrastructure can be damaged in various situations. Such changes include primary defects found in primary ciliary dyskinesia (PCD) and secondary defects developing in secondary ciliary dyskinesia (SCD). PCD is a genetic disease resulting from impaired ciliary motility causing chronic disease of the respiratory tract. SCD is an acquired condition that can be caused, for example, by respiratory infection or exposure to tobacco smoke. The diagnosis of these diseases is a complex process with many diagnostic methods, including the evaluation of ciliary ultrastructure using transmission electron microscopy (the golden standard of examination). Our goal was to create a program capable of automatic quantitative analysis of the ciliary ultrastructure, determining the ratio of primary and secondary defects, as well as analysis of the mutual orientation of cilia in the ciliary border. PCD Quant, a program developed for the automatic quantitative analysis of cilia, cannot yet be used as a stand-alone method for evaluation and provides limited assistance in classifying primary and secondary defect classes and evaluating central pair angle deviations. Nevertheless, we see great potential for the future in automatic analysis of the ciliary ultrastructure.


2021 ◽  
Vol 11 (9) ◽  
pp. 3818
Author(s):  
Consolato M. Sergi

Primary ciliary dyskinesia (PCD) is a genetic disease characterized by abnormalities in ciliary structure/function. The diagnosis of PCD relies on a combination of clinical evaluation and ultrastructural (electron microscopic) analysis of the ciliary architecture. This diagnosis may be challenging due to clinical and genetic heterogeneity and artifacts during the ciliary ultrastructure preparation and assessment. Recently, vitamin D supplementation has been proposed for several groups probably suffering from D-hypovitaminosis. Some patients with inflammatory bowel disease may have significant malabsorption, and vitamin D supplementation in these patients is recommended. Two recent reports suggest that a low plasmatic level of this vitamin is present in the PCD population. The utility of vitamin D supplementation may be essential in this group of individuals, and further investigations are warranted. Still, in examining the literature papers, it seems relevant that the authors concentrate solely on lung function in both studies. Future studies should probably target the intestinal function in patients with PCD independently from the vitamin D supplementation to fully evaluate its role.


2020 ◽  
Vol 319 (6) ◽  
pp. L1048-L1060
Author(s):  
Amelia Shoemark ◽  
Andreia L. Pinto ◽  
Mitali P. Patel ◽  
Farheen Daudvohra ◽  
Claire Hogg ◽  
...  

Primary ciliary dyskinesia (PCD) is an inherited disorder of the motile cilia. Early accurate diagnosis is important to help prevent lung damage in childhood and to preserve lung function. Confirmation of a diagnosis traditionally relied on assessment of ciliary ultrastructure by transmission electron microscopy (TEM); however, >50 known PCD genes have made the identification of biallelic mutations a viable alternative to confirm diagnosis. TEM and genotyping lack sensitivity, and research to improve accuracy of both is required. TEM can be challenging when a subtle or partial ciliary defect is present or affected cilia structures are difficult to identify due to poor contrast. Here, we demonstrate software to enhance TEM ciliary images and reduce background by averaging ciliary features. This includes an option to classify features into groups based on their appearance, to generate multiple averages when a nonhomogeneous abnormality is present. We validated this software on images taken from subjects with well-characterized PCD caused by variants in the outer dynein arm (ODA) heavy chain gene DNAH5. Examining more difficult to diagnose cases, we detected 1) regionally restricted absence of the ODAs away from the ciliary base, in a subject carrying mutations in DNAH9; 2) loss of the typically poorly contrasted inner dynein arms; and 3) sporadic absence of part of the central pair complex in subjects carrying mutations in HYDIN, including one case with an unverified genetic diagnosis. We show that this easy-to-use software can assist in detailing relationships between genotype and ultrastructural phenotype, improving diagnosis of PCD.


Author(s):  
Fiona Haward ◽  
Magdalena M. Maslon ◽  
Patricia L. Yeyati ◽  
Nicolas Bellora ◽  
Jan N. Hansen ◽  
...  

AbstractShuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.


Diagnostics ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 524
Author(s):  
Andreia L. Pinto ◽  
Ranjit K. Rai ◽  
Claire Hogg ◽  
Thomas Burgoyne

Primary ciliary dyskinesia (PCD) is a disorder that affects motile cilia in the airway that are required for the removal of mucus, debris, and pathogens. It is important to diagnose PCD in early childhood to preserve lung function. The confirmation of a diagnosis relies on the assessment of ciliary ultrastructure by transmission electron microscopy (TEM). TEM involves the quantitative assessment of the ciliary ultrastructure to identify PCD defects as well as abnormalities resulting from infection. Many specialist diagnostic centres still rely on physical counters to tally results and paper notes to summarise findings before transferring the results to computer databases/records. To speed up the diagnostic data collection and increase the protection of patient information, we have developed digital ciliary feature counters that conform to the PCD reporting international consensus guideline. These counters can be used on a computer or tablet, and automatically generate notes regarding sample observations. We show that the digital counters are easy to use and can generate TEM diagnostic reports that will be useful for many PCD diagnostic centres.


Thorax ◽  
2019 ◽  
Vol 74 (9) ◽  
pp. 914-916 ◽  
Author(s):  
Gabrielle McCray ◽  
Paul Griffin ◽  
Paul Martinello ◽  
Robb de Iongh ◽  
Jonathan Ruddle ◽  
...  

Previous reports suggested links between respiratory ciliary dysfunction and primary ciliopathies such as X-linked retinitis pigmentosa (XLRP). To investigate if patients with XLRP have abnormal airway ciliary structure or function, we assessed respiratory ciliary beat pattern and ultrastructure, including ciliary orientation, in 12 patients with XLRP without respiratory disease and 10 control subjects. Patients with XLRP had normal ciliary ultrastructure but significantly (p=0.004) increased mean ciliary deviation (33.8°±9.4°) compared with normal subjects (14.8°±5.4°). Altered orientation was associated with impaired ciliary beat pattern in six patients with XLRP. These findings indicate that XLRP mutations, affecting non-motile cilia of the photoreceptors in the retina, can have effects on motile cilia in the respiratory tract. The observation of disrupted ciliary orientation in patients with XLRP is suggestive of a defect in planar cell polarity.


Sign in / Sign up

Export Citation Format

Share Document