scholarly journals CiliarMove: new software for evaluating ciliary beat frequency helps find novel mutations by a Portuguese multidisciplinary team on primary ciliary dyskinesia

2021 ◽  
Vol 7 (1) ◽  
pp. 00792-2020
Author(s):  
Pedro Sampaio ◽  
Mónica Ferro da Silva ◽  
Inês Vale ◽  
Mónica Roxo-Rosa ◽  
Andreia Pinto ◽  
...  

Evaluation of ciliary beat frequency (CBF) performed by high-speed videomicroscopy analysis (HVMA) is one of the techniques required for the correct diagnosis of primary ciliary dyskinesia (PCD). Currently, due to lack of open-source software, this technique is widely performed by visually counting the ciliary beatings per a given time-window. Our aim was to generate open-source, fast and intuitive software for evaluating CBF, validated in Portuguese PCD patients and healthy volunteers.Nasal brushings collected from 17 adult healthy volunteers and 34 PCD-referred subjects were recorded using HVMA. Evaluation of CBF was compared by two different methodologies: the new semi-automated computer software CiliarMove and the manual observation method using slow-motion movies. Clinical history, nasal nitric oxide and transmission electron microscopy were performed for diagnosis of PCD in the patient group. Genetic analysis was performed in a subset (n=8) of suspected PCD patients.The correlation coefficient between the two methods was R2=0.9895. The interval of CBF values obtained from the healthy control group (n=17) was 6.18–9.17 Hz at 25°C. In the PCD-excluded group (n=16), CBF ranged from 6.84 to 10.93 Hz and in the PCD group (n=18), CBF ranged from 0 to 14.30 Hz.We offer an automated open-source programme named CiliarMove, validated by the manual observation method in a healthy volunteer control group, a PCD-excluded group and a PCD-confirmed group. In our hands, comparisons between CBF intervals alone could discern between healthy and PCD groups in 78% of the cases.

2019 ◽  
Vol 57 (4) ◽  
pp. 237-244 ◽  
Author(s):  
Sylvain Blanchon ◽  
Marie Legendre ◽  
Mathieu Bottier ◽  
Aline Tamalet ◽  
Guy Montantin ◽  
...  

BackgroundPrimary ciliary dyskinesia (PCD) is a rare genetic disorder resulting in abnormal ciliary motility/structure, extremely heterogeneous at genetic and ultrastructural levels. We aimed, in light of extensive genotyping, to identify specific and quantitative ciliary beating anomalies, according to the ultrastructural phenotype.MethodsWe prospectively included 75 patients with PCD exhibiting the main five ultrastructural phenotypes (n=15/group), screened all corresponding PCD genes and measured quantitative beating parameters by high-speed video-microscopy (HSV).ResultsSixty-eight (91%) patients carried biallelic mutations. Combined outer/inner dynein arms (ODA/IDA) defect induces total ciliary immotility, regardless of the gene involved. ODA defect induces a residual beating with dramatically low ciliary beat frequency (CBF) related to increased recovery stroke and pause durations, especially in case of DNAI1 mutations. IDA defect with microtubular disorganisation induces a low percentage of beating cilia with decreased beating angle and, in case of CCDC39 mutations, a relatively conserved mean CBF with a high maximal CBF. Central complex defect induces nearly normal beating parameters, regardless of the gene involved, and a gyrating motion in a minority of ciliated edges, especially in case of RSPH1 mutations. PCD with normal ultrastructure exhibits heterogeneous HSV values, but mostly an increased CBF with an extremely high maximal CBF.ConclusionQuantitative HSV analysis in PCD objectives beating anomalies associated with specific ciliary ultrastructures and genotypes. It represents a promising approach to guide the molecular analyses towards the best candidate gene(s) to be analysed or to assess the pathogenicity of the numerous sequence variants identified by next-generation-sequencing.


2011 ◽  
Vol 49 (4) ◽  
pp. 407-412
Author(s):  
J.U. Sommer ◽  
B.A. Stuck ◽  
C. Heiser ◽  
S.S. Kassner ◽  
K. Hormann ◽  
...  

Background: In recent years, the positive effect of topically applied estriol nose ointment in the adjuvant therapy of Morbus-Rendu-Osler (HHT) has been proven. Due to the induced metaplasia, a complete destruction of the ciliated cells may be expected. However, data regarding the ciliary function of HHT patients with and without the use of topical estriol application are currently lacking. Methodology/principal: Ciliated samples were obtained by gently brushing the inferior nasal turbinate of 19 healthy volunteers and 15 patients with known HHT (8 of them regularly using 0.1% estriol nose ointment for 2 years (HHTwE) and 7 of them not using the ointment in the last 12 months (HHTwoE)). Analysis was done with an inverted phase contrast microscope connected to a high-speed digital camera. Recorded parameters were the visual integrity (VI) of the ciliary beat and its frequency (CBF) in Hz. Results: The VI index of all samples showed an undisrupted, even beating pattern with a difference between the three groups. The mean CBF in all HHT patients was reduced compared to the control group`s mean CBF. Within the HHT group itself, the mean CBF was reduced in the HHTwE group compared to the HHTwoE group. Conclusions: The ciliary beat frequency of HHT patients is impaired compared to the control group and even more so if the HHT patients topically apply estriol more than 6 months. An undisrupted beating pattern is found in the HHTwE group despite the fact that estrogens induce a transformation of the ciliated columnar into a keratinizing squamous epithelium. This data may justify the adjuvant application of estriol as a nose ointment in the treatment of epistaxis in HHT patients without the fear of damage to the nose`s mucus clearance.


2011 ◽  
Vol 111 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Mary A. K. Olm ◽  
João E. Kögler ◽  
Mariangela Macchione ◽  
Amelia Shoemark ◽  
Paulo H. N. Saldiva ◽  
...  

Ciliary beat frequency (CBF) measurements provide valuable information for diagnosing of primary ciliary dyskinesia (PCD). We developed a system for measuring CBF, used it in association with electron microscopy to diagnose PCD, and then analyzed characteristics of PCD patients. 1 The CBF measurement system was based on power spectra measured through digital imaging. Twenty-four patients suspected of having PCD (age 1–19 yr) were selected from a group of 75 children and adolescents with pneumopathies of unknown causes. Ten healthy, nonsmoking volunteers (age ≥17 yr) served as a control group. Nasal brush samples were collected, and CBF and electron microscopy were performed. PCD was diagnosed in 12 patients: 5 had radial spoke defects, 3 showed absent central microtubule pairs with transposition, 2 had outer dynein arm defects, 1 had a shortened outer dynein arm, and 1 had a normal ultrastructure. Previous studies have reported that the most common cilia defects are in the dynein arm. As expected, the mean CBF was higher in the control group ( P < 0.001) and patients with normal ultrastructure ( P < 0.002), than in those diagnosed with cilia ultrastructural defects (i.e., PCD patients). An obstructive ventilatory pattern was observed in 70% of the PCD patients who underwent pulmonary function tests. All PCD patients presented bronchial wall thickening on chest computed tomography scans. The protocol and diagnostic techniques employed allowed us to diagnose PCD in 16% of patients in this study.


2014 ◽  
Vol 44 (6) ◽  
pp. 1579-1588 ◽  
Author(s):  
Johanna Raidt ◽  
Julia Wallmeier ◽  
Rim Hjeij ◽  
Jörg Große Onnebrink ◽  
Petra Pennekamp ◽  
...  

Primary ciliary dyskinesia (PCD) is a rare genetic disorder leading to recurrent respiratory tract infections. High-speed video-microscopy analysis (HVMA) of ciliary beating, currently the first-line diagnostic tool for PCD in most centres, is challenging because recent studies have expanded the spectrum of HVMA findings in PCD from grossly abnormal to very subtle. The objective of this study was to describe the diversity of HVMA findings in genetically confirmed PCD individuals.HVMA was performed as part of the routine work-up of individuals with suspected PCD. Subsequent molecular analysis identified biallelic mutations in the PCD-related genes of 66 individuals. 1072 videos of these subjects were assessed for correlation with the genotype.Biallelic mutations (19 novel) were found in 17 genes: DNAI1, DNAI2, DNAH5, DNAH11, CCDC103, ARMC4, KTU/DNAAF2, LRRC50/DNAAF1, LRRC6, DYX1C1, ZMYND10, CCDC39, CCDC40, CCDC164, HYDIN, RSPH4A and RSPH1. Ciliary beat pattern variations correlated well with the genetic findings, allowing the classification of typical HVMA findings for different genetic groups. In contrast, analysis of ciliary beat frequency did not result in additional diagnostic impact.In conclusion, this study provides detailed knowledge about the diversity of HVMA findings in PCD and may therefore be seen as a guide to the improvement of PCD diagnostics.


2014 ◽  
Vol 129 (S1) ◽  
pp. S45-S50 ◽  
Author(s):  
J H Kim ◽  
J Rimmer ◽  
N Mrad ◽  
S Ahmadzada ◽  
R J Harvey

AbstractObjective:This study investigated the effect of Betadine on ciliated human respiratory epithelial cells.Methods:Epithelial cells from human sinonasal mucosa were cultured at the air–liquid interface. The cultures were tested with Hanks' balanced salt solution containing 10 mM HEPES (control), 100 µM ATP (positive control), 5 per cent Betadine or 10 per cent Betadine (clinical dose). Ciliary beat frequency was analysed using a high-speed camera on a computer imaging system.Results:Undiluted 10 per cent Betadine (n = 6) decreased the proportion of actively beating cilia over 1 minute (p < 0.01). Ciliary beat frequency decreased from 11.15 ± 4.64 Hz to no detectable activity. The result was similar with 5 per cent Betadine (n = 7), with no significant difference compared with the 10 per cent solution findings.Conclusion:Betadine, at either 5 and 10 per cent, was ciliotoxic. Caution should be applied to the use of topical Betadine solution on the respiratory mucosal surface.


1998 ◽  
Vol 12 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Mark Jorissen

Mucociliary transport is one of the most important defense mechanisms of the airway. Mucociliary transport time or rate, as measured using the saccharin test or the radioisotope technique, respectively, is clinically the most relevant parameter, although subject to large intra- and interindividual variability. There is no correlation between mucociliary transport in vivo and ciliary beat frequency ex vivo. Preliminary evidence demonstrates that mucociliary transport correlates with ciliary structure and orientation as investigated with transmission and scanning electron microscopy. A correlation is presented between ciliary beat frequency and secondary ciliary abnormalities. This correlation can best be described according to the logistic sigmoid model (r = 0.69). Based on these functional data, an ultrastructural distinction is proposed among normal (less than 5%), light (5 to 15%), moderate (15 to 25%), and severe (more than 25%) secondary ciliary dyskinesia.


1997 ◽  
Vol 106 (10) ◽  
pp. 854-858 ◽  
Author(s):  
André Coste ◽  
Marie-Claude Millepied ◽  
Catherine Chapelin ◽  
Philippe Reinert ◽  
Françoise Poron ◽  
...  

The goal of the study was to evaluate the incidence of primary ciliary dyskinesia (PCD) in children suffering from recurrent respiratory tract infections (RRIs) by means of a noninvasive method. Respiratory ciliated cells were collected by nasal brushing in 118 children (4.6 ± 2.5 years) with RRIs. The ciliary beat frequency (CBF) was measured with a stroboscopic method, and when the CBF was abnormal, the ciliary ultrastructure was analyzed by a quantitative method. The CBF could be measured in 106 patients (90%) and was abnormal in 15 patients. The ciliary ultrastructure was found to be abnormal in 11 of 15 patients: PCD was diagnosed in 6 cases, and acquired ciliary defects were observed in the remaining 5 patients. Our conclusion, that PCD is rare but not exceptional (5.6%) in children with RRIs, justifies the systematic investigation of ciliated cells in such patients. For this purpose, nasal brushing can be used to sample ciliated cells even in young children.


2020 ◽  
Vol 21 (11) ◽  
pp. 4052
Author(s):  
Makoto Yasuda ◽  
Taka-aki Inui ◽  
Shigeru Hirano ◽  
Shinji Asano ◽  
Tomonori Okazaki ◽  
...  

Small inhaled particles, which are entrapped by the mucous layer that is maintained by mucous secretion via mucin exocytosis and fluid secretion, are removed from the nasal cavity by beating cilia. The functional activities of beating cilia are assessed by their frequency and the amplitude. Nasal ciliary beating is controlled by intracellular ions (Ca2+, H+ and Cl−), and is enhanced by a decreased concentration of intracellular Cl− ([Cl−]i) in ciliated human nasal epithelial cells (cHNECs) in primary culture, which increases the ciliary beat amplitude. A novel method to measure both ciliary beat frequency (CBF) and ciliary beat distance (CBD, an index of ciliary beat amplitude) in cHNECs has been developed using high-speed video microscopy, which revealed that a decrease in [Cl−]i increased CBD, but not CBF, and an increase in [Cl−]i decreased both CBD and CBF. Thus, [Cl−]i inhibits ciliary beating in cHNECs, suggesting that axonemal structures controlling CBD and CBF may have Cl− sensors and be regulated by [Cl−]i. These observations indicate that the activation of Cl− secretion stimulates ciliary beating (increased CBD) mediated via a decrease in [Cl−]i in cHNECs. Thus, [Cl−]i is critical for controlling ciliary beating in cHNECs. This review introduces the concept of Cl− regulation of ciliary beating in cHNECs.


Sign in / Sign up

Export Citation Format

Share Document