scholarly journals Unique cytokine and chemokine responses to exertional heat stroke in mice

2017 ◽  
Vol 122 (2) ◽  
pp. 296-306 ◽  
Author(s):  
Michelle A. King ◽  
Lisa R. Leon ◽  
Deborah A. Morse ◽  
Thomas L. Clanton

In heat stroke, cytokines are believed to play important roles in multiorgan dysfunction and recovery of damaged tissue. The time course of the cytokine response is well defined in passive heat stroke (PHS), but little is known about exertional heat stroke (EHS). In this study we used a recently developed mouse EHS model to measure the responses of circulating cytokines/chemokines and cytokine gene expression in muscle. A very rapid increase in circulating IL-6 was observed at maximum core temperature (Tc,max) that peaked at 0.5 h of recovery and disappeared by 3 h. IL-10 was not elevated at any time. This contrasts with PHS where both IL-6 and IL-10 peak at 3 h of recovery. Keratinocyte chemoattractant (KC), granulocyte-colony-stimulating factor (G-CSF), macrophage inflammatory protein (MIP)-2, MIP-1β, and monocyte chemoattractive factor-1 also demonstrated near peak responses at 0.5 h. Only G-CSF and KC remained elevated at 3 h. Muscle mRNA for innate immune cytokines (IL-6, IL-10, IL-1β, but not TNF-α) were greatly increased in diaphragm and soleus compared with similar measurements in PHS. We hypothesized that these altered cytokine responses in EHS may be due to a lower Tc,maxachieved in EHS or a lower overall heat load. However, when these variables were controlled for, they could not account for the differences between EHS and PHS. We conclude that moderate exercise, superimposed on heat exposure, alters the pattern of circulating cytokine and chemokine production and muscle cytokine expression in EHS. This response may comprise an endocrine reflex to exercise in heat that initiates survival pathways and early onset tissue repair mechanisms.NEW & NOTEWORTHY Immune modulators called cytokines are released following extreme hyperthermia leading to heat stroke. It is not known whether exercise in hyperthermia, leading to EHS, influences this response. Using a mouse model of EHS, we discovered a rapid accumulation of interleukin-6 and other cytokines involved in immune cell trafficking. This response may comprise a protective mechanism for early induction of cell survival and tissue repair pathways needed for recovery from thermal injury.

2021 ◽  
Author(s):  
Rita Pombinho ◽  
Jorge Pinheiro ◽  
Mariana Resende ◽  
Diana Meireles ◽  
Sirpa Jalkanen ◽  
...  

ABSTRACTScavenger receptors are part of a complex surveillance system expressed by host cells to efficiently orchestrate innate immune response against bacterial infections. Stabilin-1 (STAB-1) is a scavenger receptor involved in cell trafficking, inflammation and cancer, however its role in infection remains to be elucidated. Listeria monocytogenes (Lm) is a major intracellular human food-borne pathogen causing severe infections in susceptible hosts. Using a mouse model of infection, we demonstrate here that STAB-1 controls Lm-induced cytokine and chemokine production and immune cell accumulation in Lm-infected organs. We show that STAB-1 also regulates the recruitment of myeloid cells in response to Lm infection and contributes to clear circulating bacteria. In addition, whereas STAB-1 appears to promote bacterial uptake by macrophages, infection by pathogenic Listeria induces the down regulation of STAB-1 expression and its delocalization from the host cell membrane.We propose STAB-1 as a new SR involved in the control of Lm infection through the regulation of host defense mechanisms, a process that would be targeted by bacterial virulence factors to promote infection.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Jermaine Allen Ward ◽  
Shauna Dineen ◽  
Mark Plamper ◽  
Thomas Mayer ◽  
Lisa Leon

PLoS ONE ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. e0229616 ◽  
Author(s):  
Matthew D. Ward ◽  
Michelle A. King ◽  
Charles Gabrial ◽  
Robert W. Kenefick ◽  
Lisa R. Leon

2018 ◽  
Vol 25 (36) ◽  
pp. 4758-4784 ◽  
Author(s):  
Amy L. Wilson ◽  
Magdalena Plebanski ◽  
Andrew N. Stephens

Cancer is one of the leading causes of death worldwide, and current research has focused on the discovery of novel approaches to effectively treat this disease. Recently, a considerable number of clinical trials have demonstrated the success of immunomodulatory therapies for the treatment of cancer. Monoclonal antibodies can target components of the immune system to either i) agonise co-stimulatory molecules, such as CD137, OX40 and CD40; or ii) inhibit immune checkpoints, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death-1 (PD-1) and its corresponding ligand PD-L1. Although tumour regression is the outcome for some patients following immunotherapy, many patients still do not respond. Furthermore, chemotherapy has been the standard of care for most cancers, but the immunomodulatory capacity of these drugs has only recently been uncovered. The ability of chemotherapy to modulate the immune system through a variety of mechanisms, including immunogenic cell death (ICD), increased antigen presentation and depletion of regulatory immune cells, highlights the potential for synergism between conventional chemotherapy and novel immunotherapy. In addition, recent pre-clinical trials indicate dipeptidyl peptidase (DPP) enzyme inhibition, an enzyme that can regulate immune cell trafficking to the tumour microenvironment, as a novel cancer therapy. The present review focuses on the current immunological approaches for the treatment of cancer, and summarizes clinical trials in the field of immunotherapy as a single treatment and in combination with chemotherapy.


2020 ◽  
Vol 21 (3) ◽  
pp. 288-301 ◽  
Author(s):  
Lin Zhou ◽  
Luyao Ao ◽  
Yunyi Yan ◽  
Wanting Li ◽  
Anqi Ye ◽  
...  

Background: Some of the current challenges and complications of cancer therapy are chemotherapy- induced peripheral neuropathy (CIPN) and the neuropathic pain that are associated with this condition. Many major chemotherapeutic agents can cause neurotoxicity, significantly modulate the immune system and are always accompanied by various adverse effects. Recent evidence suggests that cross-talk occurs between the nervous system and the immune system during treatment with chemotherapeutic agents; thus, an emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN, as demonstrated by the upregulation of chemokines. Chemokines were originally identified as regulators of peripheral immune cell trafficking, and chemokines are also expressed on neurons and glial cells in the central nervous system. Objective: In this review, we collected evidence demonstrating that chemokines are potential mediators and contributors to pain signalling in CIPN. The expression of chemokines and their receptors, such as CX3CL1/CX3CR1, CCL2/CCR2, CXCL1/CXCR2, CXCL12/CXCR4 and CCL3/CCR5, is altered in the pathological conditions of CIPN, and chemokine receptor antagonists attenuate neuropathic pain behaviour. Conclusion: By understanding the mechanisms of chemokine-mediated communication, we may reveal chemokine targets that can be used as novel therapeutic strategies for the treatment of CIPN.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Bertram K. Woitok ◽  
Shawki Bahmad ◽  
Gregor Lindner

Background.Exertional heat stroke is a life-threatening condition often complicated by multiorgan failure. We hereby present a case of a 25-year-old male presenting with syncope after a 10  km run in 28°C outside temperature who developed acute liver failure. Case Presentation. Initial temperature was found to be 41.1°C, and cooling measures were rapidly applied. He suffered from acute renal failure and rhabdomyolysis and proceeded to acute liver failure (ASAT 6100 U/l and ALAT 6561 U/l) due to hypoxic hepatitis on day 3. He did not meet criteria for emergency liver transplantation and recovered on supportive care. Conclusions. Acute liver failure due to heat stroke is a life-threatening condition with often delayed onset, which nevertheless resolves on supportive care in the majority of cases; thus, a delayed referral to transplant seems to be reasonable.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


Sign in / Sign up

Export Citation Format

Share Document