scholarly journals MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry

2018 ◽  
Vol 124 (1) ◽  
pp. 40-51 ◽  
Author(s):  
Yuan Wen ◽  
Kevin A. Murach ◽  
Ivan J. Vechetti ◽  
Christopher S. Fry ◽  
Chase Vickery ◽  
...  

Analysis of skeletal muscle cross sections is an important experimental technique in muscle biology. Many aspects of immunohistochemistry and fluorescence microscopy can now be automated, but most image quantification techniques still require extensive human input, slowing progress and introducing the possibility of user bias. MyoVision is a new software package that was developed to overcome these limitations. The software improves upon previously reported automatic techniques and analyzes images without requiring significant human input and correction. When compared with data derived by manual quantification, MyoVision achieves an accuracy of ≥94% for basic measurements such as fiber number, fiber type distribution, fiber cross-sectional area, and myonuclear number. Scientists can download the software free from www.MyoVision.org and use it to automate the analysis of their own experimental data. This will improve the efficiency and consistency of the analysis of muscle cross sections and help to reduce the burden of routine image quantification in muscle biology. NEW & NOTEWORTHY Scientists currently analyze images of immunofluorescently labeled skeletal muscle using time-consuming techniques that require sustained human supervision. As well as being inefficient, these techniques can increase variability in studies that quantify morphological adaptations of skeletal muscle at the cellular level. MyoVision is new software that overcomes these limitations by performing high-content analysis of muscle cross sections with minimal manual input. It is open source and freely available.

2019 ◽  
Vol 127 (6) ◽  
pp. 1698-1709 ◽  
Author(s):  
Gema Sanz ◽  
Luis Manuel Martínez-Aranda ◽  
Per A. Tesch ◽  
Rodrigo Fernandez-Gonzalo ◽  
Tommy R. Lundberg

Because manual immunohistochemical analysis of features such as skeletal muscle fiber typing, capillaries, myonuclei, and fiber size-related parameters is time consuming and prone to user subjectivity, automatic computational methods could allow for faster and more objective evaluation. Here, we developed Muscle2View, a free CellProfiler-based pipeline that integrates all key fiber-morphological variables, including the novel quantification of the capillary-to-fiber interface, in one single tool. Provided that the images are of sufficient quality and the settings are configured for the specific study, the pipeline allows for automatic and unsupervised analysis of fiber borders, myonuclei, capillaries, and morphometric parameters in a fiber type-specific manner from large batches of images in <10 min/tissue sample. The novel identification of the capillary-to-fiber interface allowed for the calculation of microvascular factors such as capillary contacts (CC), individual capillary-to-fiber ratio (C/Fi), and capillary-to-fiber perimeter exchange (CFPE) index. When comparing the Muscle2View pipeline to manual or semiautomatic analysis, overall the results revealed strong correlations. For several variables, however, there were differences (5–15%) between values computed by manual counting and Muscle2View, suggesting that the methods should not necessarily be used interchangeably. Collectively, we demonstrate that the Muscle2View pipeline can provide unbiased and high-content analysis of muscle cross-sectional immunohistochemistry images. In addition to the classical morphological measurements, the Muscle2View can identify the complex capillary-to-fiber network and myonuclear density in a fiber type-specific manner. This robust analysis is done in one single run within a user-friendly and flexible environment based on the free and widely used image software CellProfiler. NEW & NOTEWORTHY Here, we developed a freely available CellProfiler-based pipeline termed Muscle2View, which provides unbiased, high-content analysis of muscle cross-sectional immunohistochemistry images. In addition to fiber typing, myonuclei counting, and the quantification of fiber type-specific morphological measurements, the Muscle2View pipeline can identify the complex capillary-to-fiber network from a batch of images within minutes. Thus, the Muscle2View is a viable tool for researchers aiming to quantify immunohistochemical variables from skeletal muscle biopsies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lyle W. Babcock ◽  
Amy D. Hanna ◽  
Nadia H. Agha ◽  
Susan L. Hamilton

Abstract Background Manual analysis of cross-sectional area, fiber-type distribution, and total and centralized nuclei in skeletal muscle cross sections is tedious and time consuming, necessitating an accurate, automated method of analysis. While several excellent programs are available, our analyses of skeletal muscle disease models suggest the need for additional features and flexibility to adequately describe disease pathology. We introduce a new semi-automated analysis program, MyoSight, which is designed to facilitate image analysis of skeletal muscle cross sections and provide additional flexibility in the analyses. Results We describe staining and imaging methods that generate high-quality images of immunofluorescent-labelled cross sections from mouse skeletal muscle. Using these methods, we can analyze up to 5 different fluorophores in a single image, allowing simultaneous analyses of perinuclei, central nuclei, fiber size, and fiber-type distribution. MyoSight displays high reproducibility among users, and the data generated are in close agreement with data obtained from manual analyses of cross-sectional area (CSA), fiber number, fiber-type distribution, and number and localization of myonuclei. Furthermore, MyoSight clearly delineates changes in these parameters in muscle sections from a mouse model of Duchenne muscular dystrophy (mdx). Conclusions MyoSight is a new program based on an algorithm that can be optimized by the user to obtain highly accurate fiber size, fiber-type identification, and perinuclei and central nuclei per fiber measurements. MyoSight combines features available separately in other programs, is user friendly, and provides visual outputs that allow the user to confirm the accuracy of the analyses and correct any inaccuracies. We present MyoSight as a new program to facilitate the analyses of fiber type and CSA changes arising from injury, disease, exercise, and therapeutic interventions.


2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


1995 ◽  
Vol 78 (1) ◽  
pp. 293-299 ◽  
Author(s):  
J. A. Carson ◽  
M. Yamaguchi ◽  
S. E. Alway

The purpose of this study was to determined whether fibers in the anterior latissimus dorsi (ALD) muscle from aged Japanese quail have decreased hypertrophic or proliferative responses to 30 days of stretch overload compared with fibers from adult birds. Two groups of quail were studied, 12-wk-old quail (adult; n = 16) and 90-wk-old quail (aged; n = 16). The left wing of each bird was overloaded with a weight corresponding to 10% of the bird's body weight, and the right wing served as the intra-animal control. Quails were killed after 30 days of stretch overload. Total fiber number was quantified by counting all the fibers in a transverse section from the midbelly of the ALD muscle. ALD muscles in aged quails retained the capacity to increase their muscle mass (145%), total fiber number (49%), and fiber cross-sectional area (54%) in response to stretch overload. The ALD muscle in aged quail had a significantly lower increase in muscle mass (33%) and mass corrected for nonmuscle tissue (36%) compared with the ALD from young adult birds. Age had no effect on fiber type distribution shifts with stretch. These results suggest that although muscles in old birds have a substantial ability to adapt to enlarge, stretch-induced hypertrophy is attenuated in muscles from old quail.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


1998 ◽  
Vol 26 (4) ◽  
pp. 598-602 ◽  
Author(s):  
Donald T. Kirkendall ◽  
William E. Garrett

Aging results in a gradual loss of muscle function, and there are predictable age-related alterations in skeletal muscle function. The typical adult will lose muscle mass with age; the loss varies according to sex and the level of muscle activity. At the cellular level, muscles loose both cross-sectional area and fiber numbers, with type II muscle fibers being the most affected by aging. Some denervation of fibers may occur. The combination of these factors leads to an increased percentage of type I fibers in older adults. Metabolically, the glycolytic enzymes seem to be little affected by aging, but the aerobic enzymes appear to decline with age. Aged skeletal muscle produces less force and there is a general “slowing” of the mechanical characteristics of muscle. However, neither reduced muscle demand nor the subsequent loss of function is inevitable with aging. These losses can be minimized or even reversed with training. Endurance training can improve the aerobic capacity of muscle, and resistance training can improve central nervous system recruitment of muscle and increase muscle mass. Therefore, physical activity throughout life is encouraged to prevent much of the age-related impact on skeletal muscle.


1993 ◽  
Vol 74 (2) ◽  
pp. 527-531 ◽  
Author(s):  
B. Jiang ◽  
R. R. Roy ◽  
C. Navarro ◽  
V. R. Edgerton

The objectives of the present study were to determine the size and enzyme properties of soleus fibers of rats subjected to a 4-day spaceflight (National Aeronautics and Space Administration, STS-41) and the effects of exogenous growth hormone (GH) on the atrophic response of the muscle. Four groups of rats were studied: 1) control (Con), 2) Con plus GH treated (Con + GH), 3) flight (Fl), and 4) F1 plus GH treated (Fl + GH). Cross-sectional area and the activities of succinate dehydrogenase and myofibrillar adenosinetriphosphatase (ATPase) were determined in fibers identified in frozen serial cross sections. Fibers were categorized immunohistochemically as slow, fast, or slow-fast on the basis of their reaction with slow and fast myosin heavy-chain (MHC) monoclonal antibodies. Fibers also were categorized as light or dark on the basis of their staining for ATPase at pH 8.6. After the 4-day flight, mean body weight was significantly decreased compared with control. The absolute and relative (muscle wt/body wt) soleus weights were significantly smaller in the Fl and Fl + GH rats compared with their respective ground-based controls. In both flight groups, the cross-sectional area of the light ATPase fibers was significantly smaller (approximately 30%) than control. Three of 11 flight rats had a higher proportion of fibers expressing both slow and fast MHCs than expected on the basis of the fiber type distribution in the 11 control rats. Mean fiber succinate dehydrogenase and ATPase activities were similar among the four groups.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 141 (4) ◽  
pp. 943-953 ◽  
Author(s):  
Carol A. Sartorius ◽  
Brian D. Lu ◽  
Leslie Acakpo-Satchivi ◽  
Renee P. Jacobsen ◽  
William C. Byrnes ◽  
...  

Myosin in adult murine skeletal muscle is composed primarily of three adult fast myosin heavy chain (MyHC) isoforms. These isoforms, MyHC-IIa, -IId, and -IIb, are &gt;93% identical at the amino acid level and are broadly expressed in numerous muscles, and their genes are tightly linked. Mice with a null mutation in the MyHC-IId gene have phenotypes that include growth inhibition, muscle weakness, histological abnormalities, kyphosis (spinal curvature), and aberrant kinetics of muscle contraction and relaxation. Despite the lack of MyHC-IId, IId null mice have normal amounts of myosin in their muscles because of compensation by the MyHC-IIa gene. In each muscle examined from IId null mice, there was an increase in MyHC-IIa– containing fibers. MyHC-IIb content was unaffected in all muscles except the masseter, where its expression was extinguished in the IId null mice. Cross-sectional fiber areas, total muscle cross-sectional area, and total fiber number were affected in ways particular to each muscle. Developmental expression of adult MyHC genes remained unchanged in IId null mice. Despite this universal compensation of MyHC-IIa expression, IId null mice have severe phenotypes. We conclude that despite the similarity in sequence, MyHC-IIa and -IId have unique roles in the development and function of skeletal muscle.


Author(s):  
Marne C Hagemeijer ◽  
Annelotte M Vonk ◽  
Nikhil T Awatade ◽  
Iris A L Silva ◽  
Christian Tischer ◽  
...  

Abstract Motivation The forskolin-induced swelling (FIS) assay has become the preferential assay to predict the efficacy of approved and investigational CFTR-modulating drugs for individuals with cystic fibrosis (CF). Currently, no standardized quantification method of FIS data exists thereby hampering inter-laboratory reproducibility. Results We developed a complete open-source workflow for standardized high-content analysis of CFTR function measurements in intestinal organoids using raw microscopy images as input. The workflow includes tools for (i) file and metadata handling; (ii) image quantification and (iii) statistical analysis. Our workflow reproduced results generated by published proprietary analysis protocols and enables standardized CFTR function measurements in CF organoids. Availability All workflow components are open-source and freely available: the htmrenamer R package for file handling https://github.com/hmbotelho/htmrenamer; CellProfiler and ImageJ analysis scripts/pipelines https://github.com/hmbotelho/FIS_image_analysis; the Organoid Analyst application for statistical analysis https://github.com/hmbotelho/organoid_analyst; detailed usage instructions and a demonstration dataset https://github.com/hmbotelho/FIS_analysis. Distributed under GPL v3.0. Supplementary information Supplementary information and a stepwise guide for software installation and data analysis for training purposes are available at Bioinformatics online.


2003 ◽  
Vol 28 (3) ◽  
pp. 491-500 ◽  
Author(s):  
Chris M. Gregory ◽  
Krista Vandenborne ◽  
Michael J. Castro ◽  
G. Alton Dudley

Results of studies of rodent skeletal muscle plasticity are often extrapolated to humans. However, responses to "disuse" may be species specific, in part because of different inherent properties of anatomically similar muscles. Thus, this study quantified human and rat m. vastus lateralis (VL) fiber adaptations to 11 weeks of spinal cord injury (SCI). The m. VL was taken from 8 young (54 d) male Charles River rats after T-9 laminectomy (n = 4) or sham surgery (n = 4). In addition, the m. VL was biopsied in 7 able-bodied and in 7 SCI humans (31.3 ± 4.7 years, mean ± SE). Samples were sectioned and fibers were analyzed for type (I, IIa, IIb/x), cross-sectional area (CSA), succinate dehydrogenase (SDH), α-glycerol-phosphate dehydrogenase (GPDH), and actomyosin adenosine triphosphatase (qATPase) activities. Rat fibers had 1.5- to 2-fold greater SDH and GPDH activities while their fibers were 60% the size of those in humans. The most striking differences, however, were the absence of slow fibers in the rat and its four-fold greater proportion of IIb/x fibers (80% vs. 16% of the CSA) compared to humans. SCI decreased SDH activity more in rats whereas atrophy and IIa to IIb/x fiber shift occurred to a greater extent in humans. It is suggested that the rat is a reasonable model for studying the predominant response to SCI, atrophy. However, its high proportion of IIb/x fibers limits evaluation of the mechanical consequences of shifting to "faster" contractile machinery after SCI. Key words: enzyme, fiber type, disuse, biopsy


Sign in / Sign up

Export Citation Format

Share Document