An open-source high-content analysis workflow for CFTR function measurements using the forskolin-induced swelling assay

Author(s):  
Marne C Hagemeijer ◽  
Annelotte M Vonk ◽  
Nikhil T Awatade ◽  
Iris A L Silva ◽  
Christian Tischer ◽  
...  

Abstract Motivation The forskolin-induced swelling (FIS) assay has become the preferential assay to predict the efficacy of approved and investigational CFTR-modulating drugs for individuals with cystic fibrosis (CF). Currently, no standardized quantification method of FIS data exists thereby hampering inter-laboratory reproducibility. Results We developed a complete open-source workflow for standardized high-content analysis of CFTR function measurements in intestinal organoids using raw microscopy images as input. The workflow includes tools for (i) file and metadata handling; (ii) image quantification and (iii) statistical analysis. Our workflow reproduced results generated by published proprietary analysis protocols and enables standardized CFTR function measurements in CF organoids. Availability All workflow components are open-source and freely available: the htmrenamer R package for file handling https://github.com/hmbotelho/htmrenamer; CellProfiler and ImageJ analysis scripts/pipelines https://github.com/hmbotelho/FIS_image_analysis; the Organoid Analyst application for statistical analysis https://github.com/hmbotelho/organoid_analyst; detailed usage instructions and a demonstration dataset https://github.com/hmbotelho/FIS_analysis. Distributed under GPL v3.0. Supplementary information Supplementary information and a stepwise guide for software installation and data analysis for training purposes are available at Bioinformatics online.

2019 ◽  
Vol 35 (21) ◽  
pp. 4356-4363 ◽  
Author(s):  
Gaëlle Lefort ◽  
Laurence Liaubet ◽  
Cécile Canlet ◽  
Patrick Tardivel ◽  
Marie-Christine Père ◽  
...  

Abstract Motivation In metabolomics, the detection of new biomarkers from Nuclear Magnetic Resonance (NMR) spectra is a promising approach. However, this analysis remains difficult due to the lack of a whole workflow that handles spectra pre-processing, automatic identification and quantification of metabolites and statistical analyses, in a reproducible way. Results We present ASICS, an R package that contains a complete workflow to analyse spectra from NMR experiments. It contains an automatic approach to identify and quantify metabolites in a complex mixture spectrum and uses the results of the quantification in untargeted and targeted statistical analyses. ASICS was shown to improve the precision of quantification in comparison to existing methods on two independent datasets. In addition, ASICS successfully recovered most metabolites that were found important to explain a two level condition describing the samples by a manual and expert analysis based on bucketing. It also found new relevant metabolites involved in metabolic pathways related to risk factors associated with the condition. Availability and implementation ASICS is distributed as an R package, available on Bioconductor. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Frederik Görlitz ◽  
Jonathan Lightley ◽  
Sunil Kumar ◽  
Edwin Garcia ◽  
Ming Yan ◽  
...  

2020 ◽  
Vol 36 (9) ◽  
pp. 2943-2945 ◽  
Author(s):  
Francisco Madrid-Gambin ◽  
Sergio Oller-Moreno ◽  
Luis Fernandez ◽  
Simona Bartova ◽  
Maria Pilar Giner ◽  
...  

Abstract Summary Nuclear magnetic resonance (NMR)-based metabolomics is widely used to obtain metabolic fingerprints of biological systems. While targeted workflows require previous knowledge of metabolites, prior to statistical analysis, untargeted approaches remain a challenge. Computational tools dealing with fully untargeted NMR-based metabolomics are still scarce or not user-friendly. Therefore, we developed AlpsNMR (Automated spectraL Processing System for NMR), an R package that provides automated and efficient signal processing for untargeted NMR metabolomics. AlpsNMR includes spectra loading, metadata handling, automated outlier detection, spectra alignment and peak-picking, integration and normalization. The resulting output can be used for further statistical analysis. AlpsNMR proved effective in detecting metabolite changes in a test case. The tool allows less experienced users to easily implement this workflow from spectra to a ready-to-use dataset in their routines. Availability and implementation The AlpsNMR R package and tutorial is freely available to download from http://github.com/sipss/AlpsNMR under the MIT license. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 124 (1) ◽  
pp. 40-51 ◽  
Author(s):  
Yuan Wen ◽  
Kevin A. Murach ◽  
Ivan J. Vechetti ◽  
Christopher S. Fry ◽  
Chase Vickery ◽  
...  

Analysis of skeletal muscle cross sections is an important experimental technique in muscle biology. Many aspects of immunohistochemistry and fluorescence microscopy can now be automated, but most image quantification techniques still require extensive human input, slowing progress and introducing the possibility of user bias. MyoVision is a new software package that was developed to overcome these limitations. The software improves upon previously reported automatic techniques and analyzes images without requiring significant human input and correction. When compared with data derived by manual quantification, MyoVision achieves an accuracy of ≥94% for basic measurements such as fiber number, fiber type distribution, fiber cross-sectional area, and myonuclear number. Scientists can download the software free from www.MyoVision.org and use it to automate the analysis of their own experimental data. This will improve the efficiency and consistency of the analysis of muscle cross sections and help to reduce the burden of routine image quantification in muscle biology. NEW & NOTEWORTHY Scientists currently analyze images of immunofluorescently labeled skeletal muscle using time-consuming techniques that require sustained human supervision. As well as being inefficient, these techniques can increase variability in studies that quantify morphological adaptations of skeletal muscle at the cellular level. MyoVision is new software that overcomes these limitations by performing high-content analysis of muscle cross sections with minimal manual input. It is open source and freely available.


Author(s):  
Tobias Tekath ◽  
Martin Dugas

Abstract Motivation Each year, the number of published bulk and single-cell RNA-seq data sets is growing exponentially. Studies analyzing such data are commonly looking at gene-level differences, while the collected RNA-seq data inherently represents reads of transcript isoform sequences. Utilizing transcriptomic quantifiers, RNA-seq reads can be attributed to specific isoforms, allowing for analysis of transcript-level differences. A differential transcript usage (DTU) analysis is testing for proportional differences in a gene’s transcript composition, and has been of rising interest for many research questions, such as analysis of differential splicing or cell type identification. Results We present the R package DTUrtle, the first DTU analysis workflow for both bulk and single-cell RNA-seq data sets, and the first package to conduct a ‘classical’ DTU analysis in a single-cell context. DTUrtle extends established statistical frameworks, offers various result aggregation and visualization options and a novel detection probability score for tagged-end data. It has been successfully applied to bulk and single-cell RNA-seq data of human and mouse, confirming and extending key results. Additionally, we present novel potential DTU applications like the identification of cell type specific transcript isoforms as biomarkers. Availability The R package DTUrtle is available at https://github.com/TobiTekath/DTUrtle with extensive vignettes and documentation at https://tobitekath.github.io/DTUrtle/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (18) ◽  
pp. 3524-3526 ◽  
Author(s):  
Yonghui Dong ◽  
Liron Feldberg ◽  
Asaph Aharoni

Abstract Motivation The use of stable isotope labeling is highly advantageous for structure elucidation in metabolomics studies. However, computational tools dealing with multiple-precursor-based labeling studies are still missing. Hence, we developed Miso, an R package providing automated and efficient data analysis workflow to detect the complete repertoire of labeled molecules from multiple-precursor-based labeling experiments. Results The capability of Miso is demonstrated by the analysis of liquid chromatography-mass spectrometry data obtained from duckweed plants fed with one unlabeled and two differently labeled tyrosine (unlabeled tyrosine, tyrosine-2H4 and tyrosine-13C915N1). The resulting data matrix generated by Miso contains sets of unlabeled and labeled ions with their retention time, m/z values and number of labeled atoms that can be directly utilized for database query and biological studies. Availability and implementation Miso is publicly available on the CRAN repository (https://cran.r-project.org/web/packages/Miso). A reproducible case study and a detailed tutorial are available from GitHub (https://github.com/YonghuiDong/Miso_example). Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Author(s):  
Luca Alessandrì ◽  
Marco Beccuti ◽  
Maddalena Arigoni ◽  
Martina Olivero ◽  
Greta Romano ◽  
...  

AbstractSummarySingle-cell RNA sequencing has emerged as an essential tool to investigate cellular heterogeneity, and highlighting cell sub-population specific signatures. Nowadays, dedicated and user-friendly bioinformatics workflows are required to exploit the deconvolution of single-cells transcriptome. Furthermore, there is a growing need of bioinformatics workflows granting both functional, i.e. saving information about data and analysis parameters, and computation reproducibility, i.e. storing the real image of the computation environment. Here, we present rCASC a modular RNAseq analysis workflow allowing data analysis from counts generation to cell sub-population signatures identification, granting both functional and computation reproducibility.Availability and ImplementationrCASC is part of the reproducible bioinfomatics project. rCASC is a docker based application controlled by a R package available at https://github.com/kendomaniac/rCASC.Supplementary informationSupplementary data are available at rCASC github


2021 ◽  
Author(s):  
Isaac Fink ◽  
Richard J. Abdill ◽  
Ran Blekhman ◽  
Laura Grieneisen

AbstractSummaryA key aspect of microbiome research is analysis of longitudinal dynamics using time series data. A method to visualize both the proportional and absolute change in the abundance of multiple taxa across multiple subjects over time is needed. We developed BiomeHorizon, an open-source R package that visualizes longitudinal compositional microbiome data using horizon plots.Availability and ImplementationBiomeHorizon is available at https://github.com/blekhmanlab/biomehorizon/ and released under the MIT license. A guide with step-by-step instructions for using the package is provided at https://blekhmanlab.github.io/biomehorizon/. The guide also provides code to reproduce all plots in this [email protected], [email protected], [email protected] informationNone


Sign in / Sign up

Export Citation Format

Share Document