scholarly journals Effect of conditioning and physiology hyperthermia on canine skeletal muscle mitochondrial oxygen consumption

Author(s):  
Michael S. Davis ◽  
Montana R. Barrett

Exercise often causes skeletal muscle hyperthermia, likely resulting in decreased efficiency of mitochondrial respiration. We hypothesized that athletic conditioning would improve mitochondrial tolerance to hyperthermia. Skeletal muscle biopsies were obtained from 6 Alaskan sled dogs under light general anesthesia before and after a full season of conditioning and racing, and respiration of permeabilized muscle fibers was measured at 38, 40, 42, and 44°C. There was no effect of temperature on phosphorylating respiration, and athletic conditioning increased maximal phosphorylating respiration by 19%. Leak respiration increased and calculated efficiency of oxidative phosphorylation decreased with increasing incubation temperature, and athletic conditioning resulted in higher leak respiration and lower calculated oxidative phosphorylation efficiency at all temperatures. Conditioning increased skeletal muscle expression of putative mitochondrial leak pathways adenine nucleotide transporter 1 and uncoupling protein 3, both of which were correlated with the magnitude of leak respiration. We conclude that athletic conditioning in elite canine endurance athletes results in increased capacity for mitochondrial proton leak that potentially reduces maximal mitochondrial membrane potential during periods of high oxidative phosphorylation. This effect may provide a mechanistic explanation for previously-reported decreases in exercise-induced muscle damage in well-conditioned subjects.

1960 ◽  
Vol 198 (2) ◽  
pp. 463-466 ◽  
Author(s):  
Frank E. South

The effect of temperature on rates of oxidative phosphorylation (pyruvate substrate) by heart mitochondria obtained from hibernating hamsters, control hamsters and rats was studied. Apparent energies of activation ( Ea) determined between 5° and 24°C were, respectively, 20.4, 20.8 and 28.3 Kcal. for the rates of oxygen consumption and 20.6, 21.4 and 29.5 Kcal. for the rates of phosphorylation. The difference between the rats and either group of hamsters were significant statistically. The slope of the regression line fitted to the data obtained from hibernating animals did not differ significantly from that of the control hamsters. However, a parallel vertical displacement of the lines indicated a probable increase in these oxidative enzymes upon preparation for, or during, hibernation. No significant alterations in the efficiency of oxidative phosphorylation with variations in the incubation temperature were noted in any of the preparations.


2003 ◽  
Vol 285 (4) ◽  
pp. E775-E782 ◽  
Author(s):  
Joris Hoeks ◽  
Marleen A. van Baak ◽  
Matthijs K. C. Hesselink ◽  
Gabby B. Hul ◽  
Hubert Vidal ◽  
...  

In humans, β-adrenergic stimulation increases energy and fat metabolism. In the case of β1-adrenergic stimulation, it is fueled by an increased lipolysis. We examined the effect of β2-adrenergic stimulation, with and without a blocker of lipolysis, on thermogenesis and substrate oxidation. Furthermore, the effect of β1-and β2-adrenergic stimulation on uncoupling protein 3 (UCP3) mRNA expression was studied. Nine lean males received a 3-h infusion of dobutamine (DOB, β1) or salbutamol (SAL, β2). Also, we combined SAL with acipimox to block lipolysis (SAL+ACI). Energy and substrate metabolism were measured continuously, blood was sampled every 30 min, and muscle biopsies were taken before and after infusion. Energy expenditure significantly increased ∼13% in all conditions. Fat oxidation increased 47 ± 7% in the DOB group and 19 ± 7% in the SAL group but remained unchanged in the SAL+ACI condition. Glucose oxidation decreased 40 ± 9% upon DOB, remained unchanged during SAL, and increased 27 ± 11% upon SAL+ACI. Plasma free fatty acid (FFA) levels were increased by SAL (57 ± 11%) and DOB (47 ± 16%), whereas SAL+ACI caused about fourfold lower FFA levels compared with basal levels. No change in UCP3 was found after DOB or SAL, whereas SAL+ACI downregulated skeletal muscle UCP3 mRNA levels 38 ± 13%. In conclusion, β2-adrenergic stimulation directly increased energy expenditure independently of plasma FFA levels. Furthermore, this is the first study to demonstrate a downregulation of skeletal muscle UCP3 mRNA expression after the lowering of plasma FFA concentrations in humans, despite an increase in energy expenditure upon β2-adrenergic stimulation.


1999 ◽  
Vol 9 (2) ◽  
pp. 166-180 ◽  
Author(s):  
Michael Svensson ◽  
Christer Malm ◽  
Michail Tonkonogi ◽  
Bjǒrn Ekblom ◽  
Bertil Sjödin ◽  
...  

The aim of the present study was to investigate the concentration of ubiquinone-10 (Q10), at rest, in human skeletal muscle and blood plasma before and after a period of high-intensity training with or without Q10 supplementation. Another aim was to explore whether adenine nucleotide catabolism, lipid peroxidation, and mitochondrial function were affected by Q10 treatment. Seventeen young healthy men were assigned to either a control (placebo) or a Q10-supplementation (120 mg/day) group. Q10 supplementation resulted in a significantly higher plasma Q10/lotal cholesterol level on Days 11 and20compared with Day 1. There was no significant change in the concentration of Q10 in skeletal muscle or in isolated skeletal muscle mitochondria in either group. Plasma hypoxanthine and uric acid concentrations increased markedly after each exercise test session in both groups. After the training period, the postexercise increase in plasma hypoxanthine was markedly reduced in both groups, but the response was partially reversed after the recovery period. It was concluded that Q10 supplementation increases the concentration of Q1O in plasma but not in skeletal muscle.


2008 ◽  
Vol 33 (3) ◽  
pp. 333-340 ◽  
Author(s):  
Susanne Neschen ◽  
Yvonne Katterle ◽  
Julia Richter ◽  
Robert Augustin ◽  
Stephan Scherneck ◽  
...  

Uncoupling of oxidative phosphorylation represents a potential target for the treatment of hyperglycemia and insulin resistance in obesity and type 2 diabetes. The present study investigated whether the expression of uncoupling protein 1 in skeletal muscles of transgenic (mUCP1 TG) mice modulates insulin action in major insulin target tissues in vivo. Euglycemic-hyperinsulinemic clamps (17 pM·kg lean body mass−1·min−1) were performed in 9-mo-old hemizygous male mUCP1 TG mice and wild-type (WT) littermates matched for body composition. mUCP1 TG mice exhibited fasting hypoglycemia and hypoinsulinemia compared with WT mice, whereas fasting hepatic glucose production rates were comparable in both genotypes. mUCP1 TG mice were markedly more sensitive to insulin action compared with WT mice and displayed threefold higher glucose infusion rates, enhanced skeletal muscle and white adipose tissue glucose uptake, and whole body glycolysis rates. In the absence of alterations in plasma adiponectin concentrations, acceleration of insulin-stimulated glucose turnover in skeletal muscle of mUCP1 TG mice was accompanied by increased phosphorylated Akt-to-Akt and phosphorylated AMP-activated protein kinase (AMPK)-to-AMPK ratios compared with WT mice. UCP1-mediated uncoupling of oxidative phosphorylation in skeletal muscle was paralleled by AMPK activation and thereby stimulated insulin-mediated glucose uptake in skeletal muscle.


1999 ◽  
Vol 276 (2) ◽  
pp. H663-H670 ◽  
Author(s):  
Stephen J. Duffy ◽  
Gishel New ◽  
Binh T. Tran ◽  
Richard W. Harper ◽  
Ian T. Meredith

Although many factors are thought to contribute to the regulation of metabolic vasodilation in skeletal muscle vasculature, recent interest has focused on the role of the endothelium. We examined the relative roles of nitric oxide (NO) and of vasodilator prostanoids in the control of metabolically induced functional hyperemia in the forearm of humans. In 43 healthy volunteers [24 ± 5 (SD) yr] we assessed resting and functional hyperemic blood flow (FHBF) in response to 2 min of isotonic forearm exercise before and after inhibition of NO and/or vasodilator prostanoid production with intra-arterial N G-monomethyl-l-arginine (l-NMMA, 2 mg/min) and aspirin (ASA, 3 mg/min), respectively. Blood flow was measured using venous occlusion plethysmography.l-NMMA and ASA decreased resting forearm blood flow by 42% ( P < 0.0001) and 23% ( P < 0.0001), respectively, whereas infusion of ASA followed byl-NMMA reduced flow by a further 24% ( P < 0.05).l-NMMA reduced peak FHBF by 18% [from 13.9 ± 1.0 to 11.4 ± 1.1 (SE) ml ⋅ 100 ml forearm−1 ⋅ min−1, P = 0.003] and the volume “repaid” after 1 and 5 min by 25% (8.9 ± 0.7 vs. 6.7 ± 0.7 ml/100 ml, P < 0.0001) and 37% (26.6 ± 1.8 vs. 16.8 ± 1.6 ml/100 ml, P < 0.0001). ASA similarly reduced peak FHBF by 19% (from 14.5 ± 1.1 to 11.8 ± 0.9 ⋅ 100 ml forearm−1 ⋅ min−1, P < 0.001) and the volume repaid after 1 and 5 min by 14% (7.5 ± 0.6 vs. 6.4 ± 0.6 ml/100 ml, P = 0.0001) and 20% (21.2 ± 1.5 vs. 16.9 ± 1.5 ml/100 ml, P < 0.0001), respectively. The coinfusion of ASA andl-NMMA did not decrease FHBF to a greater extent than either agent alone. These data suggest that endothelium-derived NO and vasodilator prostanoids contribute to resting blood flow and metabolic vasodilation in skeletal muscle vasculature in healthy humans. Although these vasodilator mechanisms operate in parallel in exercise-induced hyperemia, they appear not to be additive. Other mechanisms must also be operative in metabolic vasodilation.


2009 ◽  
Vol 107 (1) ◽  
pp. 283-289 ◽  
Author(s):  
Robert S. Lee-Young ◽  
Benedict J. Canny ◽  
Damian E. Myers ◽  
Glenn K. McConell

AMP-activated protein kinase (AMPK) has been extensively studied in whole muscle biopsy samples of humans, yet the fiber type-specific expression and/or activation of AMPK is unknown. We examined basal and exercise AMPK-α Thr172 phosphorylation and AMPK subunit expression (α1, α2, and γ3) in type I, IIa, and IIx fibers of human skeletal muscle before and after 10 days of exercise training. Before training basal AMPK phosphorylation was greatest in type IIa fibers ( P < 0.05 vs. type I and IIx), while an acute bout of exercise increased AMPK phosphorylation in all fibers ( P < 0.05), with the greatest increase occurring in type IIx fibers. Exercise training significantly increased basal AMPK phosphorylation in all fibers, and the exercise-induced increases were uniformly suppressed compared with pretraining exercise. Expression of AMPK-α1 and -α2 was similar between fibers and was not altered by exercise training. However, AMPK-γ3 was differentially expressed in skeletal muscle fibers (type IIx > type IIa > type I), irrespective of training status. Thus skeletal muscle AMPK phosphorylation and AMPK expression are fiber type specific in humans in the basal state, as well as during exercise. Our findings reveal fiber type-specific differences that have been masked in previous studies examining mixed muscle samples.


2013 ◽  
Vol 304 (12) ◽  
pp. E1379-E1390 ◽  
Author(s):  
Brynjulf Mortensen ◽  
Janne R. Hingst ◽  
Nicklas Frederiksen ◽  
Rikke W. W. Hansen ◽  
Caroline S. Christiansen ◽  
...  

Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling. We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 h of acute exercise performed at the same relative workload before and after 12 wk of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status were determined by Western blotting. AMPK activities were measured using activity assays. Protein levels of AMPKα1 and -γ1 were significantly increased, whereas AMPKγ3 levels decreased with training independently of group. The LBW group had higher exercise-induced AMPK Thr172 phosphorylation before training and higher exercise-induced ACC2 Ser221 phosphorylation both before and after training compared with NBW. Despite exercise being performed at the same relative intensity (65% of V̇o2peak), the acute exercise response on AMPK Thr172, ACC2 Ser221, AMPKα2β2γ1, and AMPKα2β2γ3 activities, GS activity, and adenine nucleotides as well as hexokinase II mRNA levels were all reduced after exercise training. Increased exercise-induced muscle AMPK activation and ACC2 Ser221 phosphorylation in LBW subjects may indicate a more sensitive AMPK system in this population. Long-term exercise training may reduce the need for AMPK to control energy turnover during exercise. Thus, the remaining γ3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance.


2010 ◽  
Vol 1797 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Gilles Gouspillou ◽  
Isabelle Bourdel-Marchasson ◽  
Richard Rouland ◽  
Guillaume Calmettes ◽  
Jean-Michel Franconi ◽  
...  

2000 ◽  
Vol 351 (2) ◽  
pp. 307-311 ◽  
Author(s):  
Susana CADENAS ◽  
Julie A. BUCKINGHAM ◽  
Julie ST-PIERRE ◽  
Keith DICKINSON ◽  
Robert B. JONES ◽  
...  

Mitochondrial proton leak in rat muscle is responsible for approx. 15% of the standard metabolic rate, so its modulation could be important in regulating metabolic efficiency. We report in the present paper that physiological concentrations of AMP (K0.5 = 80µM) increase the resting respiration rate and double the proton conductance of rat skeletal-muscle mitochondria. This effect is specific for AMP. AMP also doubles proton conductance in skeletal-muscle mitochondria from an ectotherm (the frog Rana temporaria), suggesting that AMP activation is not primarily for thermogenesis. AMP activation in rat muscle mitochondria is unchanged when uncoupling protein-3 is doubled by starvation, indicating that this protein is not involved in the AMP effect. AMP activation is, however, abolished by inhibitors and substrates of the adenine nucleotide translocase (ANT), suggesting that this carrier (possibly the ANT1 isoform) mediates AMP activation. AMP activation of ANT could be important for physiological regulation of metabolic rate.


2012 ◽  
Vol 112 (7) ◽  
pp. 1122-1127 ◽  
Author(s):  
Sukhbir S. Dhamrait ◽  
Alun G. Williams ◽  
Stephen H. Day ◽  
James Skipworth ◽  
John R. Payne ◽  
...  

Uncoupling proteins 2 and 3 (UCP2 and UCP3) may negatively regulate mitochondrial ATP synthesis and, through this, influence human physical performance. However, human data relating to both these issues remain sparse. Examining the association of common variants in the UCP3/2 locus with performance phenotypes offers one means of investigation. The efficiency of skeletal muscle contraction, delta efficiency (DE), was assessed by cycle ergometry in 85 young, healthy, sedentary adults both before and after a period of endurance training. Of these, 58 were successfully genotyped for the UCP3-55C>T (rs1800849) and 61 for the UCP2-866G>A (rs659366) variant. At baseline, UCP genotype was unrelated to any physical characteristic, including DE. However, the UCP2-866G>A variant was independently and strongly associated with the DE response to physical training, with UCP2-866A allele carriers exhibiting a greater increase in DE with training (absolute change in DE of −0.2 ± 3.6% vs. 1.7 ± 2.8% vs. 2.3 ± 3.7% for GG vs. GA vs. AA, respectively; P = 0.02 for A allele carriers vs. GG homozygotes). In multivariate analysis, there was a significant interaction between UCP2-866G>A and UCP3-55C>T genotypes in determining changes in DE (adjusted R2 = 0.137; P value for interaction = 0.003), which was independent of the effect of either single polymorphism or baseline characteristics. In conclusion, common genetic variation at the UCP3/2 gene locus is associated with training-related improvements in DE, an index of skeletal muscle performance. Such effects may be mediated through differences in the coupling of mitochondrial energy transduction in human skeletal muscle, but further mechanistic studies are required to delineate this potential role.


Sign in / Sign up

Export Citation Format

Share Document