Thyroid hormone effects on LKB1, MO25, phospho-AMPK, phospho-CREB, and PGC-1α in rat muscle

2008 ◽  
Vol 105 (4) ◽  
pp. 1218-1227 ◽  
Author(s):  
D. J. Branvold ◽  
D. R. Allred ◽  
D. J. Beckstead ◽  
H. J. Kim ◽  
N. Fillmore ◽  
...  

Expression of all of the isoforms of the subunits of AMP-activated protein kinase (AMPK) and AMPK activity is increased in skeletal muscle of hyperthyroid rats. Activity of AMPK in skeletal muscle is regulated principally by the upstream kinase, LKB1. This experiment was designed to determine whether the increase in AMPK activity is accompanied by increased expression of the LKB1, along with binding partner proteins. LKB1, MO25, and downstream targets were determined in muscle extracts in control rats, in rats given 3 mg of thyroxine and 1 mg of triiodothyronine per kilogram chow for 4 wk, and in rats given 0.01% propylthiouracil (PTU; an inhibitor of thyroid hormone synthesis) in drinking water for 4 wk (hypothyroid group). LKB1 and MO25 increased in the soleus of thyroid hormone-treated rats vs. the controls. In other muscle types, LKB1 responses were variable, but MO25 increased in all. In soleus, MO25 mRNA increased with thyroid hormone treatment, and STRAD mRNA increased with PTU treatment. Phospho-AMPK and phospho-ACC were elevated in soleus and gastrocnemius of hyperthyroid rats. Thyroid hormone treatment also increased the amount of phospho-cAMP response element binding protein (CREB) in the soleus, heart, and red quadriceps. Four proteins having CREB response elements (CRE) in promoter regions of their genes (peroxisome proliferator-activated receptor-γ coactivator-1α, uncoupling protein 3, cytochrome c, and hexokinase II) were all increased in soleus in response to thyroid hormones. These data provide evidence that thyroid hormones increase soleus muscle LKB1 and MO25 content with subsequent activation of AMPK, phosphorylation of CREB, and expression of mitochondrial protein genes having CRE in their promoters.

2005 ◽  
Vol 386 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Gemma SOLANES ◽  
Neus PEDRAZA ◽  
Verónica CALVO ◽  
Antonio VIDAL-PUIG ◽  
Bradford B. LOWELL ◽  
...  

The transcription of the human UCP3 (uncoupling protein-3) gene in skeletal muscle is tightly regulated by metabolic signals related to fatty acid availability. However, changes in thyroid status also modulate UCP3 gene expression, albeit by unknown mechanisms. We created transgenic mice bearing the entire human UCP3 gene to investigate the effect of thyroid hormones on human UCP3 gene expression. Treatment of human UCP3 transgenic mice with thyroid hormones induced the expression of the human gene in skeletal muscle. In addition, transient transfection experiments demonstrate that thyroid hormones activate the transcription of the human UCP3 gene promoter when MyoD and the TR (thyroid hormone receptor) were co-transfected. The action of thyroid hormones on UCP3 gene transcription is mediated by the binding of the TR to a proximal region in the UCP3 gene promoter that contains a direct repeat structure. An intact DNA sequence of this site is required for thyroid hormone responsiveness and TR binding. Chromatin immunoprecipitation assays revealed that the TR binds this element in vivo. The murine Ucp3 gene promoter was also dependent on MyoD and responsive to thyroid hormone in transient transfection assays. However, it was much less sensitive to thyroid hormone than the human UCP3 promoter. In summary, UCP3 gene transcription is activated by thyroid hormone treatment in vivo, and this activation is mediated by a TRE (thyroid hormone response element) in the proximal promoter region. Such regulation suggests a link between UCP3 gene expression and the effects of thyroid hormone on mitochondrial function in skeletal muscle.


1995 ◽  
Vol 311 (2) ◽  
pp. 567-573 ◽  
Author(s):  
P Chiarugi ◽  
G Raugei ◽  
R Marzocchini ◽  
T Fiaschi ◽  
C Ciccarelli ◽  
...  

The modulation of expression of the skeletal muscle and erythrocyte acylphosphatase isoenzymes by thyroid hormone has been investigated. Our results indicate a differential regulation of the two enzymic isoforms by tri-iodothyronine (T3) in K562 cells in culture: an increase in the specific mRNA during T3-stimulation is shown only for the skeletal muscle isoenzyme. A fast and transient T3 induction of the accumulation of the specific mRNA can be observed, reaching a maximum 8 h after hormone treatment and then rapidly decreasing almost to the steady-state level after 24 h. A nuclear run-on assay was performed to explore the mechanisms of this regulation. These studies indicate that T3 induction of skeletal muscle acylphosphatase mRNA is due, at least in part, to a fast and transient increase in the rate of gene transcription, within 4 h after hormone administration. A very rapid decrease is then observed within a further 2 h. T3-dependent accumulation of the mRNA for the skeletal muscle acylphosphatase requires ongoing protein synthesis, as confirmed by inhibition with cycloheximide or puromycin. These findings indicate that the transcriptional regulation of the gene may be indirect.


Iodine (I2) is essential in the synthesis of thyroid hormones T4 and T3 and functioning of the thyroid gland. Both T3 and T4 are metabolically active, but T3 is four times more potent than T4. Our body contains 20-30 mg of I2, which is mainly stored in the thyroid gland. Iodine is naturally present in some foods, added to others, and available as a dietary supplement. Serum thyroid stimulating hormone (TSH) level is a sensitive marker of thyroid function. Serum TSH is increased in hypothyroidism as in Hashimoto's thyroiditis. In addition to regulation of thyroid function, TSH promotes thyroid growth. If thyroid hormone synthesis is chronically impaired, TSH stimulation eventually may lead to the development of a goiter. This chapter explores the iodide metabolism and effects of Hashimoto's disease.


2001 ◽  
Vol 26 (1) ◽  
pp. 67-77 ◽  
Author(s):  
C Wrutniak-Cabello ◽  
F Casas ◽  
G Cabello

Triiodothyronine (T3) is considered a major regulator of mitochondrial activity. In this review, we show evidence of the existence of a direct T3 mitochondrial pathway, and try to clarify the respective importance of the nuclear and mitochondrial pathways for organelle activity. Numerous studies have reported short-term and delayed T3 stimulation of mitochondrial oxygen consumption. Convincing data indicate that an early influence occurs through an extra-nuclear mechanism insensitive to inhibitors of protein synthesis. Although it has been shown that diiodothyronines could actually be T3 mediators of this short-term influence, the detection of specific T3-binding sites, probably corresponding to a 28 kDa c-Erb Aalpha1 protein of the inner membrane, also supports a direct T3 influence. The more delayed influence of thyroid hormone upon mitochondrial respiration probably results from mechanisms elicited at the nuclear level, including changes in phospholipid turnover and stimulation of uncoupling protein expression, leading to an increased inner membrane proton leak. However, the involvement of a direct mitochondrial T3 pathway leading to a rapid stimulation of mitochondrial protein synthesis has to be considered. Both pathways are obviously involved in the T3 stimulation of mitochondrial genome transcription. First, a 43 kDa c-Erb Aalpha1 protein located in the mitochondrial matrix (p43), acting as a potent T3-dependent transcription factor of the mitochondrial genome, induces early stimulation of organelle transcription. In addition, T3 increases mitochondrial TFA expression, a mitochondrial transcription factor encoded by a nuclear gene. Similarly, the stimulation of mitochondriogenesis by thyroid hormone probably involves both pathways. In particular, the c-erb Aalpha gene simultaneously encodes a nuclear and a mitochondrial T3 receptor (p43), thus ensuring coordination of the expression of the mitochondrial genome and of nuclear genes encoding mitochondrial proteins. Recent studies concerning the physiological importance of the direct mitochondrial T3 pathway involving p43 led to the conclusion that it is not only involved in the regulation of fuel metabolism, but also in the regulation of cell differentiation. As the processes leading to or resulting from differentiation are energy-consuming, p43 coordination of metabolism and differentiation could be of significant importance in the regulation of development.


2001 ◽  
Vol 361 (1) ◽  
pp. 49-56 ◽  
Author(s):  
James A. HARPER ◽  
Jeff A. STUART ◽  
Mika B. JEKABSONS ◽  
Damien ROUSSEL ◽  
Kevin M. BRINDLE ◽  
...  

Western blots detected uncoupling protein 3 (UCP3) in skeletal-muscle mitochondria from wild-type but not UCP3 knock-out mice. Calibration with purified recombinant UCP3 showed that mouse and rat skeletal muscle contained 0.14μg of UCP3/mg of mitochondrial protein. This very low UCP3 content is 200–700-fold less than the concentration of UCP1 in brown-adipose-tissue mitochondria from warm-adapted hamster (24–84μg of UCP1/mg of mitochondrial protein). UCP3 was present in brown-adipose-tissue mitochondria from warm-adapted rats but was undetectable in rat heart mitochondria. We expressed human UCP3 in yeast mitochondria at levels similar to, double and 7-fold those found in rodent skeletal-muscle mitochondria. Yeast mitochondria containing UCP3 were more uncoupled than empty-vector controls, particularly at concentrations that were 7-fold physiological. However, uncoupling by UCP3 was not stimulated by the known activators palmitate and superoxide; neither were they inhibited by GDP, suggesting that the observed uncoupling was a property of non-native protein. As a control, UCP1 was expressed in yeast mitochondria at similar concentrations to that of UCP3 and at up to 50% of the physiological level of UCP1. Low levels of UCP1 gave palmitate-dependent and GDP-sensitive proton conductance but higher levels of UCP1 caused an additional GDP-insensitive uncoupling artifact. We conclude that the uncoupling of yeast mitochondria by high levels of UCP3 expression is entirely an artifact and provides no evidence for any native uncoupling activity of the protein.


2004 ◽  
Vol 180 (1) ◽  
pp. 45-53 ◽  
Author(s):  
L Liu ◽  
TE Porter

Growth hormone cell differentiation normally occurs between day 14 and day 16 of chicken embryonic development. We reported previously that corticosterone (CORT) could induce somatotroph differentiation in vitro and in vivo and that thyroid hormones could act in combination with CORT to further augment the abundance of somatotrophs in vitro. The objective of the present study was to test our hypothesis that endogenous thyroid hormones regulate the abundance of somatotrophs during chicken embryonic development. Plasma samples were collected on embryonic day (e) 9-14. We found that plasma CORT and thyroid hormone levels increased progressively in mid-embryogenesis to e 13 or e 14, immediately before normal somatotroph differentiation. Administration of thyroxine (T4) and triiodothyronine (T3) into the albumen of fertile eggs on e 11 increased somatotroph proportions prematurely on e 13 in the developing chick embryos in vivo. Furthermore, administration of methimazole, the thyroid hormone synthesis inhibitor, on e 9 inhibited somatotroph differentiation in vivo, as assessed on e 14; this suppression was completely reversed by T3 replacement on e 11. Since we reported that T3 alone was ineffective in vitro, we interpret these findings to indicate that the effects of treatments in vivo were due to interactions with endogenous glucocorticoids. These results indicate that treatment with exogenous thyroid hormones can modulate somatotroph abundance and that endogenous thyroid hormone synthesis likely contributes to normal somatotroph differentiation.


Thyroid ◽  
2004 ◽  
Vol 14 (3) ◽  
pp. 177-185 ◽  
Author(s):  
Marcia Silva Queiroz ◽  
Yvonne Shao ◽  
Faramarz Ismail-Beigi

Endocrinology ◽  
2016 ◽  
Vol 157 (1) ◽  
pp. 23-38 ◽  
Author(s):  
Ronny Lesmana ◽  
Rohit A. Sinha ◽  
Brijesh K. Singh ◽  
Jin Zhou ◽  
Kenji Ohba ◽  
...  

Abstract Thyroid hormone (TH) and autophagy share similar functions in regulating skeletal muscle growth, regeneration, and differentiation. Although TH recently has been shown to increase autophagy in liver, the regulation and role of autophagy by this hormone in skeletal muscle is not known. Here, using both in vitro and in vivo models, we demonstrated that TH induces autophagy in a dose- and time-dependent manner in skeletal muscle. TH induction of autophagy involved reactive oxygen species (ROS) stimulation of 5′adenosine monophosphate-activated protein kinase (AMPK)-Mammalian target of rapamycin (mTOR)- Unc-51-like kinase 1 (Ulk1) signaling. TH also increased mRNA and protein expression of key autophagy genes, microtubule-associated protein light chain 3 (LC3), Sequestosome 1 (p62), and Ulk1, as well as genes that modulated autophagy and Forkhead box O (FOXO) 1/3a. TH increased mitochondrial protein synthesis and number as well as basal mitochondrial O2 consumption, ATP turnover, and maximal respiratory capacity. Surprisingly, mitochondrial activity and biogenesis were blunted when autophagy was blocked in muscle cells by Autophagy-related gene (Atg)5 short hairpin RNA (shRNA). Induction of ROS and 5′adenosine monophosphate-activated protein kinase (AMPK) by TH played a significant role in the up-regulation of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A), the key regulator of mitochondrial synthesis. In summary, our findings showed that TH-mediated autophagy was essential for stimulation of mitochondrial biogenesis and activity in skeletal muscle. Moreover, autophagy and mitochondrial biogenesis were coupled in skeletal muscle via TH induction of mitochondrial activity and ROS generation.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1453
Author(s):  
Sunyoon Jung ◽  
Mak-Soon Lee ◽  
Eugene Chang ◽  
Chong-Tai Kim ◽  
Yangha Kim

The Mulberry (Morus alba L.) fruit is a rich source of polyphenolic compounds; most of these are anthocyanins. Obesity is intimately related to low-grade inflammation, with increased pro-inflammatory cytokine secretion and macrophage infiltration in white adipose tissue (WAT). This study investigated whether mulberry fruit extract (ME) has beneficial effects on obesity-induced inflammation and skeletal muscle mitochondrial dysfunction. Sprague-Dawley rats were divided into four groups and fed either a low-fat diet (LFD), high-fat diet (HFD), HFD + 5 g/kg of ME (ME-L), or HFD + 10 g/kg of ME (ME-H) for 14 weeks. ME alleviated dyslipidemia and lipid accumulation, as well as pro-inflammatory cytokine production such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and monocyte chemoattractant protein 1 (MCP1) in the WAT. ME mitigated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and macrophage infiltration in WAT. Notably, microRNA (miR)-21, miR-132, and miR-43 expressions were downregulated in the WAT of the ME groups compared to the HFD group. Moreover, ME increased the mitochondrial size and mitochondrial DNA (mtDNA) content, as well as key genes’ expression related to mitochondrial function, including sirtuin (SIRT)1, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), carnitine palmitoyltransferase 1β (CPT-1β), and uncoupling protein 3 (UCP3), and adenosine monophosphate-activated protein kinase (AMPK)/SIRT activities in skeletal muscle. These results suggested that ME might alleviate obesity-induced inflammation and mitochondrial dysfunction by regulating miR-21, miR-132, and miR-43 expression in WAT, and by activating the PGC-1α/SIRT1 pathway in muscle.


Sign in / Sign up

Export Citation Format

Share Document