scholarly journals Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius

2017 ◽  
Vol 123 (6) ◽  
pp. 1433-1442 ◽  
Author(s):  
Taylor J. M. Dick ◽  
James M. Wakeling

When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity.NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling.

2018 ◽  
Vol 5 (5) ◽  
pp. 172371 ◽  
Author(s):  
Taylor J. M. Dick ◽  
James M. Wakeling

Skeletal muscle bulges when it contracts. These three-dimensional (3D) dynamic shape changes play an important role in muscle performance by altering the range of fascicle velocities over which a muscle operates. However traditional muscle models are one-dimensional (1D) and cannot fully explain in vivo shape changes. In this study we compared medial gastrocnemius behaviour during human cycling (fascicle length changes and rotations) predicted by a traditional 1D Hill-type model and by models that incorporate two-dimensional (2D) and 3D geometric constraints to in vivo measurements from B-mode ultrasound during a range of mechanical conditions ranging from 14 to 44 N m and 80 to 140 r.p.m. We found that a 1D model predicted fascicle lengths and pennation angles similar to a 2D model that allowed the aponeurosis to stretch, and to a 3D model that allowed for aponeurosis stretch and variable shape changes to occur. This suggests that if the intent of a model is to predict fascicle behaviour alone, then the traditional 1D Hill-type model may be sufficient. Yet, we also caution that 1D models are limited in their ability to infer the mechanisms by which shape changes influence muscle mechanics. To elucidate the mechanisms governing muscle shape change, future efforts should aim to develop imaging techniques able to characterize whole muscle 3D geometry in vivo during active contractions.


2002 ◽  
Vol 92 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Tadashi Muramatsu ◽  
Tetsuro Muraoka ◽  
Yasuo Kawakami ◽  
Akira Shibayama ◽  
Tetsuo Fukunaga

Fascicle curvature of human medial gastrocnemius muscle (MG) was determined in vivo by ultrasonography during isometric contractions at three (distal, central, and proximal) locations ( n = 7) and at three ankle angles ( n = 7). The curvature significantly ( P < 0.05) increased from rest to maximum voluntary contraction (MVC) (0.4–5.2 m−1). In addition, the curvature at MVC became larger in the order dorsiflexed, neutral, plantar flexed ( P < 0.05). Thus both contraction levels and muscle length affected the curvature. Intramuscular differences in neither the curvature nor the fascicle length were found. The direction of curving was consistent along the muscle: fascicles were concave in the proximal side. Fascicle length estimated from the pennation angle and muscle thickness, under the assumption that the fascicle was straight, was underestimated by ∼6%. In addition, the curvature was significantly correlated to pennation angle and muscle thickness. These findings are particularly important for understanding the mechanical functions of human skeletal muscle in vivo.


2021 ◽  
Vol 11 (8) ◽  
pp. 2091-2096
Author(s):  
Chenghui Lin ◽  
Shudong Li ◽  
Yining Lu ◽  
Huw Wiltshire

Purpose: The purpose of this study was to compare the changes in lower extremity muscle morphology and electromyography (EMG) signals during treadmill running (TR) and plastic track running (PR). Methods: A total of 10 healthy male runners aged 22.5±1.3 years, height: 175.5±4.5 cm; weight: 71.9±2.7 kg; BMI: 22.1±1.1 volunteered to participate in this study. Muscle morphology data were collected by a portable ultrasound scanner before and after running. Median frequency (MF), mean power frequency (MPF) and root mean square (RMS) were monitored during TR and PR. Results: The results indicated that muscle thickness and pennation angle have increased after running. The muscle thickness after PR showed significantly higher than TR in tested muscle except tibialis anterior (TA) and medial gastrocnemius (MG). In contrast, only the pennation angle of TA and lateral gastrocnemius (LG) after PR was significantly different from that after TR (P <0.001, P = 0.002). The most significant difference in the change rate of muscle thickness was found at TA. In addition, TA and MG showed significantly higher change rate of the pennation angle after TR than that after PR. Both of MF and MPF showed a downward trend after TR and PR. It could discover that the MF and MPF of LG during TR showed a significantly lower than that during PR both in two phases (P =0.001, P <0.001). However, in the last 5 minutes, MF and MPF of MQ during PR were smaller than that during PR (P = 0.001, P = 0.015). Furthermore, MF of RF during TR showed significantly different from that during PR (P = 0.017). From the point of RMS, in the first five minutes, the RMS of medical quadriceps (MQ), lateral quadriceps (LQ), hamstring muscles (HM) and MG during TR was significantly higher than that of PR (P <0.05). In addition, the RMS of all tested muscles after TR was significantly higher than after PR during the last 5 minutes (P <0.05). Conclusions: The current study indicated that TR and PR would cause different effects to lower extremity muscle morphology. In addition, the EMG signals based on running surfaces are also unconformity. Compared with the plastic track, the treadmill will bring more stimulation to the lower extremity muscles. The preliminary findings provide further insights into the rationality of runners’ choice of the running surface.


2001 ◽  
Vol 85 (02) ◽  
pp. 303-308 ◽  
Author(s):  
Michael Rolf ◽  
Charles Brearley ◽  
Martyn Mahaut-Smith

SummarySimultaneous measurements of [Ca2+]i and light transmission were used to examine the relationship between P2X1 receptor activation and functional platelet responses. The P2X1 agonist α,β-MeATP evoked a transient [Ca2+]i increase and a reversible decrease in light transmission; both responses required external Ca2+ and the nucleotidase apyrase. The transmission response was due to shape change only, verified by scanning electron microscopy and insensitivity to Reopro, a GPIIbIIIa antagonist. α,β-MeATP stimulated smaller shape changes than ADP, however P2X1 responses had a lifespan of <2 h following resuspension in saline and may be considerably larger in vivo. A peak [Ca2+]i increase of >50 nM was required for detectable shape change. Overlap of concentration-response relationships for α,β-MeATP-evoked [Ca2+]i and shape change suggests that other second messengers are not involved. Therefore, the physiological P2X1 agonist ATP can contribute to platelet activation, in contrast to its previously described inhibitory action at metabotropic platelet purinoceptors.


2006 ◽  
Vol 101 (4) ◽  
pp. 1060-1069 ◽  
Author(s):  
C. P. McGowan ◽  
H. A. Duarte ◽  
J. B. Main ◽  
A. A. Biewener

The goal of this study was to test whether the contractile patterns of two major hindlimb extensors of guinea fowl are altered by load-carrying exercise. We hypothesized that changes in contractile pattern, specifically a decrease in muscle shortening velocity or enhanced stretch activation, would result in a reduction in locomotor energy cost relative to the load carried. We also anticipated that changes in kinematics would reflect underlying changes in muscle strain. Oxygen consumption, muscle activation intensity, and fascicle strain rate were measured over a range of speeds while animals ran unloaded vs. when they carried a trunk load equal to 22% of their body mass. Our results showed that loading produced no significant ( P > 0.05) changes in kinematic patterns at any speed. In vivo muscle contractile strain patterns in the iliotibialis lateralis pars postacetabularis and the medial head of the gastrocnemius showed a significant increase in active stretch early in stance ( P < 0.01), but muscle fascicle shortening velocity was not significantly affected by load carrying. The rate of oxygen consumption increased by 17% ( P < 0.01) during loaded conditions, equivalent to 77% of the relative increase in mass. Additionally, relative increases in EMG intensity (quantified as mean spike amplitude) indicated less than proportional recruitment, consistent with force enhancement via stretch activation, in the proximal iliotibialis lateralis pars postacetabularis; however, a greater than proportional increase in the medial gastrocnemius was observed. As a result, when averaged for the two muscles, EMG intensity increased in direct proportion to the fractional increase in load carried.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2260 ◽  
Author(s):  
Brent J. Raiteri ◽  
Andrew G. Cresswell ◽  
Glen A. Lichtwark

Background.Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of anin vivoscan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuringin vivohuman muscle and aponeurosis deformations and (b) to examine how contraction intensity influencesin vivohuman muscle and aponeurosis strains during isometric contractions.Methods.Participants (n= 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle.Results.3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity.Discussion.3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle’s line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.


2020 ◽  
Vol 17 (162) ◽  
pp. 20190715 ◽  
Author(s):  
Ryan J. Cunningham ◽  
Ian D. Loram

The objective is to test automated in vivo estimation of active and passive skeletal muscle states using ultrasonic imaging. Current technology (electromyography, dynamometry, shear wave imaging) provides no general, non-invasive method for online estimation of skeletal muscle states. Ultrasound (US) allows non-invasive imaging of muscle, yet current computational approaches have never achieved simultaneous extraction or generalization of independently varying active and passive states. We use deep learning to investigate the generalizable content of two-dimensional (2D) US muscle images. US data synchronized with electromyography of the calf muscles, with measures of joint moment/angle, were recorded from 32 healthy participants (seven female; ages: 27.5, 19–65). We extracted a region of interest of medial gastrocnemius and soleus using our prior developed accurate segmentation algorithm. From the segmented images, a deep convolutional neural network was trained to predict three absolute, drift-free components of the neurobiomechanical state (activity, joint angle, joint moment) during experimentally designed, simultaneous independent variation of passive (joint angle) and active (electromyography) inputs. For all 32 held-out participants (16-fold cross-validation) the ankle joint angle, electromyography and joint moment were estimated to accuracy 55 ± 8%, 57 ± 11% and 46 ± 9%, respectively. With 2D US imaging, deep neural networks can encode, in generalizable form, the activity–length–tension state relationship of these muscles. Observation-only, low-power 2D US imaging can provide a new category of technology for non-invasive estimation of neural output, length and tension in skeletal muscle. This proof of principle has value for personalized muscle assessment in pain, injury, neurological conditions, neuropathies, myopathies and ageing.


2016 ◽  
Vol 11 (7) ◽  
pp. 959-964
Author(s):  
Fábio J. Lanferdini ◽  
Rodrigo R. Bini ◽  
Pedro Figueiredo ◽  
Fernando Diefenthaeler ◽  
Carlos B. Mota ◽  
...  

Purpose:To employ cluster analysis to assess if cyclists would opt for different strategies in terms of neuromuscular patterns when pedaling at the power output of their second ventilatory threshold (POVT2) compared with cycling at their maximal power output (POMAX).Methods:Twenty athletes performed an incremental cycling test to determine their power output (POMAX and POVT2; first session), and pedal forces, muscle activation, muscle–tendon unit length, and vastus lateralis architecture (fascicle length, pennation angle, and muscle thickness) were recorded (second session) in POMAX and POVT2. Athletes were assigned to 2 clusters based on the behavior of outcome variables at POVT2 and POMAX using cluster analysis.Results:Clusters 1 (n = 14) and 2 (n = 6) showed similar power output and oxygen uptake. Cluster 1 presented larger increases in pedal force and knee power than cluster 2, without differences for the index of effectiveness. Cluster 1 presented less variation in knee angle, muscle–tendon unit length, pennation angle, and tendon length than cluster 2. However, clusters 1 and 2 showed similar muscle thickness, fascicle length, and muscle activation. When cycling at POVT2 vs POMAX, cyclists could opt for keeping a constant knee power and pedal-force production, associated with an increase in tendon excursion and a constant fascicle length.Conclusions:Increases in power output lead to greater variations in knee angle, muscle–tendon unit length, tendon length, and pennation angle of vastus lateralis for a similar knee-extensor activation and smaller pedal-force changes in cyclists from cluster 2 than in cluster 1.


2010 ◽  
Vol 104 (12) ◽  
pp. 1771-1779 ◽  
Author(s):  
Gregory E. Peoples ◽  
Peter L. McLennan

Dietary fish oil modulates skeletal muscle membrane fatty acid composition. Similar changes in heart membrane composition modulate myocardial oxygen consumption and enhance mechanical performance. The rat in vivo autologous perfused hindlimb was used to investigate the influence of membrane composition on skeletal muscle function. Male Wistar rats were fed either saturated fat (SF), n-6 PUFA (linoleic acid rich) or n-3 PUFA (fish oil) diets for 8 weeks. Hindlimb skeletal muscle perfused using the animal's own blood was stimulated via the sciatic nerve (1 Hz, 6-12 V, 0·05 ms) to contract in repeated 10 min bouts. The n-3 PUFA diet markedly increased 22 : 6n-3 DHA, total n-3 PUFA and decreased the n-6:n-3 PUFA ratio (P < 0·05) in red and white skeletal muscle membranes. There was no difference in initial twitch tension but the n-3 PUFA group maintained greater twitch tension within all contraction bouts and recovered better during rest to produce greater twitch tension throughout the final contraction bout (P < 0·05). Hindlimb oxygen consumption during contraction was significantly lower in the n-3 PUFA group compared with the SF group, producing a significantly higher O2 efficiency index compared with both SF and n-6 PUFA groups (P < 0·05). Resting oxygen consumption was increased in recovery in the SF group (P < 0·05) but did not change in the n-3 PUFA group. Membrane incorporation of n-3 PUFA DHA following fish oil feeding was associated with increased efficiency of muscle O2 consumption and promoted resistance to muscle fatigue.


1976 ◽  
Vol 43 (1) ◽  
pp. 81-86 ◽  
Author(s):  
G. I. Zahalak ◽  
J. Duffy ◽  
P. A. Stewart ◽  
H. M. Litchman ◽  
R. H. Hawley ◽  
...  

Experiments are described which establish quantitative relations between muscular force, contraction velocity, and the electrical activity of the muscle (as measured by the surface EMG) under conditions of steady motion. The six subjects who participated in these experiments were all athletes. Test results confirm that human skeletal muscle in vivo behaves differently when it is contracting under load than when it is extending under load. At maximum voluntary effort the force-velocity relation is similar to that found for excised, tetanized muscle (Hill’s equation). Antagonist activity was found to be low under all conditions of load and velocity. Simple equations are proposed to describe the observed force-velocity-activation relations. The parameters of these equations, which represent the apparent internal friction properties of the muscles, are evaluated and reported.


Sign in / Sign up

Export Citation Format

Share Document