Invited Review: Effects of heat and cold stress on mammalian gene expression

2002 ◽  
Vol 92 (4) ◽  
pp. 1725-1742 ◽  
Author(s):  
Larry A. Sonna ◽  
Jun Fujita ◽  
Stephen L. Gaffin ◽  
Craig M. Lilly

This review examines the effects of thermal stress on gene expression, with special emphasis on changes in the expression of genes other than heat shock proteins (HSPs). There are ∼50 genes not traditionally considered to be HSPs that have been shown, by conventional techniques, to change expression as a result of heat stress, and there are <20 genes (including HSPs) that have been shown to be affected by cold. These numbers will likely become much larger as gene chip array and proteomic technologies are applied to the study of the cell stress response. Several mechanisms have been identified by which gene expression may be altered by heat and cold stress. The similarities and differences between the cellular responses to heat and cold may yield key insights into how cells, and by extension tissues and organisms, survive and adapt to stress.

2006 ◽  
Vol 74 (8) ◽  
pp. 4409-4417 ◽  
Author(s):  
Roshanak Tolouei Semnani ◽  
Paul B. Keiser ◽  
Yaya I. Coulibaly ◽  
Falaye Keita ◽  
Abdallah A. Diallo ◽  
...  

ABSTRACT Monocyte dysfunction in filarial infection has been proposed as one mechanism underlying the diminished antigen-specific T-cell response seen in patent lymphatic filariasis. Cytokine/chemokine production and gene expression in monocytes from filaria-infected patients and uninfected healthy donors were assessed unstimulated and in response to stimulation with Staphylococcus aureus Cowan I bacteria plus gamma interferon both before and 8 months following treatment. Monocytes from filaria-infected individuals were studded with intracellular microfilarial antigens. Furthermore, monocytes from these individuals were less capable of producing interleukin-8 (IL-8), Exodus II, MIP-1α, MIP-1β, and IL-1α and preferentially expressed genes involved in apoptosis and adhesion compared with monocytes from uninfected donors. Eight months following treatment with a single dose of ivermectin-albendazole, some of these defects were reversed, with monocyte production of IL-8, IL-1α, MIP-1α, and IL-10 being comparable to that seen in the uninfected controls. In addition, a marked increase in mRNA expression of genes associated with protein metabolism, particularly heat shock proteins, was seen compared with pretreatment expression. These data suggest that the function and gene expression of monocytes in filaria-infected patients are altered but that this dysfunction is partially reversible following antifilarial treatment.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Liang Zhang ◽  
Lidan Zhao ◽  
Xinjie Zhang ◽  
Wei Liang ◽  
Shuping Zhang

Abstract Background Timing of breeding season of temperate passerines has been considered to be adjusted to their food availability. There is little work to reveal the cell stress responses of the nestlings hatched asynchronized with the food abundance peak, which is important for understanding the physiological link between the timing of breeding and the fitness of offspring. Methods Using gene expression level of blood HSP70 and HSP90 as indicators, we compared the cell stress response of Asian Short-toed Lark (Calandrella cheleensis) nestlings hatched under conditions of low, mid or high food (grasshopper nymph) availability in 2017. Results Nymph biomass, sample time and interaction of these two factors significantly influenced the blood gene expression level of HSP70 and HSP90 of Asian Short-toed Lark nestlings. HSP70 and HSP90 gene expression levels of the nestlings at 14:00 were significantly higher than those at 5:00. At either 5:00 or 14:00, the gene expression levels of HSP70 and HSP90 increase with the decrease of nymph biomass. Conclusions These results indicate that food availability is an important environment factor inducing cellular stress of Asian Short-toed Lark nestlings. The interactive effect of the nymph abundance and sample time on the HSPs response may be related with the daily temperature variation of the grassland. Over cell stress response may be one of physiological factor mediating the effect of food availability and the nestling’s fitness.


2021 ◽  
Author(s):  
Peng Zhou ◽  
Tara A. Enders ◽  
Zachary A. Myers ◽  
Erika Magnusson ◽  
Peter A Crisp ◽  
...  

AbstractChanges in gene expression are important for response to abiotic stress. Transcriptome profiling performed on maize inbred and hybrid genotypes subjected to heat or cold stress identifies many transcript abundance changes in response to these environmental conditions. Motifs that are enriched near differentially expressed genes were used to develop machine learning models to predict gene expression responses to heat or cold. The best performing models utilize the sequences both upstream and downstream of the transcription start site. Prediction accuracies could be improved using models developed for specific co-expression clusters compared to using all up- or down-regulated genes or by only using motifs within unmethylated regions. Comparisons of expression responses in multiple genotypes were used to identify genes with variable response and to identify cis- or trans-regulatory variation. Models trained on B73 data have lower performance when applied to Mo17 or W22, this could be improved by using models trained on data from all genotypes. However, the models have low accuracy for correctly predicting genes with variable responses to abiotic stress. This study provides insights into cis-regulatory motifs for heat- and cold-responsive gene expression and provides a framework for developing models to predict expression response to abiotic stress across multiple genotypes.One sentence summaryTranscriptome profiling of maize inbred and hybrid seedlings subjected to heat or cold stress was used to identify key cis-regulatory elements and develop models to predict gene expression responses.


2018 ◽  
Author(s):  
K. Brener-Raffalli ◽  
J. Vidal-Dupiol ◽  
M. Adjeroud ◽  
O. Rey ◽  
P. Romans ◽  
...  

ABSTRACTEcosystems worldwide are suffering from climate change. Coral reef ecosystems are globally threatened by increasing sea surface temperatures. However, gene expression plasticity provides the potential for organisms to respond rapidly and effectively to environmental changes, and would be favored in variable environments. In this study, we investigated the thermal stress response in Pocillopora coral colonies from two contrasting environments by exposing them to heat stress. We compared the physiological state, bacterial and Symbionaceae communities (using 16S and ITS2 metabarcoding), and gene expression levels (using RNA-Seq) between control conditions and heat stress (the temperature just below the first signs of compromised health). Colonies from both thermal regimes remained apparently normal and presented open and colored polyps during heat stress, with no change in bacterial and Symbionaceae community composition. In contrast, they differed in their transcriptomic responses. The colonies from Oman displayed a more plastic transcriptome, but some genes had a higher basal expression level (frontloading) compared to the less thermotolerant colonies from New Caledonia. In terms of biological functions, we observed an increase in the expression of stress response genes (including induction of tumor necrosis factor receptors, heat shock proteins, and detoxification of reactive oxygen species), together with a decrease in the expression of genes involved in morpho-anatomical functions. Gene regulation (transcription factors, mobile elements, histone modifications and DNA methylation) appeared to be overrepresented in the Oman colonies, indicating possible epigenetic regulation. These results show that transcriptomic plasticity and frontloading can be co-occurring processes in corals confronted to highly variable thermal regimes.


2020 ◽  
Vol 59 (4) ◽  
pp. 669-676 ◽  
Author(s):  
Pedro Negri ◽  
Leonor Ramirez ◽  
Silvina Quintana ◽  
Nicolas Szawarski ◽  
Matías D. Maggi ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4723
Author(s):  
Rosaria Scudiero ◽  
Chiara Maria Motta ◽  
Palma Simoniello

The cleidoic eggs of oviparous reptiles are protected from the external environment by membranes and a parchment shell permeable to water and dissolved molecules. As a consequence, not only physical but also chemical insults can reach the developing embryos, interfering with gene expression. This review provides information on the impact of the exposure to cadmium contamination or thermal stress on gene expression during the development of Italian wall lizards of the genus Podarcis. The results obtained by transcriptomic analysis, although not exhaustive, allowed to identify some stress-reactive genes and, consequently, the molecular pathways in which these genes are involved. Cadmium-responsive genes encode proteins involved in cellular protection, metabolism and proliferation, membrane trafficking, protein interactions, neuronal transmission and plasticity, immune response, and transcription regulatory factors. Cold stress changes the expression of genes involved in transcriptional/translational regulation and chromatin remodeling and inhibits the transcription of a histone methyltransferase with the probable consequence of modifying the epigenetic control of DNA. These findings provide transcriptome-level evidence of how terrestrial vertebrate embryos cope with stress, giving a key to use in population survival and environmental change studies. A better understanding of the genes contributing to stress tolerance in vertebrates would facilitate methodologies and applications aimed at improving resistance to unfavourable environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Criado-Mesas ◽  
N. Abdelli ◽  
A. Noce ◽  
M. Farré ◽  
J. F. Pérez ◽  
...  

AbstractThere is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.


Sign in / Sign up

Export Citation Format

Share Document