Heat balance precedes stabilization of body temperatures during cold water immersion

2003 ◽  
Vol 95 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Peter Tikuisis

Certain previous studies suggest, as hypothesized herein, that heat balance (i.e., when heat loss is matched by heat production) is attained before stabilization of body temperatures during cold exposure. This phenomenon is explained through a theoretical analysis of heat distribution in the body applied to an experiment involving cold water immersion. Six healthy and fit men (mean ± SD of age = 37.5 ± 6.5 yr, height = 1.79 ± 0.07 m, mass = 81.8 ± 9.5 kg, body fat = 17.3 ± 4.2%, maximal O2 uptake = 46.9 ± 5.5 l/min) were immersed in water ranging from 16.4 to 24.1°C for up to 10 h. Core temperature (Tco) underwent an insignificant transient rise during the first hour of immersion, then declined steadily for several hours, although no subject's Tco reached 35°C. Despite the continued decrease in Tco, shivering had reached a steady state of ∼2 × resting metabolism. Heat debt peaked at 932 ± 334 kJ after 2 h of immersion, indicating the attainment of heat balance, but unexpectedly proceeded to decline at ∼48 kJ/h, indicating a recovery of mean body temperature. These observations were rationalized by introducing a third compartment of the body, comprising fat, connective tissue, muscle, and bone, between the core (viscera and vessels) and skin. Temperature change in this “mid region” can account for the incongruity between the body's heat debt and the changes in only the core and skin temperatures. The mid region temperature decreased by 3.7 ± 1.1°C at maximal heat debt and increased slowly thereafter. The reversal in heat debt might help explain why shivering drive failed to respond to a continued decrease in Tco, as shivering drive might be modulated by changes in body heat content.

1999 ◽  
Vol 87 (1) ◽  
pp. 243-246 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
James E. Kain ◽  
Michael N. Sawka

This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (Tcore) at 0700. Nine men were immersed (20°C, 2 h) at 0700 and 1500 on 2 days. No differences ( P > 0.05) between times were observed for metabolic heat production (M˙, 150 W ⋅ m−2), heat flow (250 W ⋅ m−2), mean skin temperature (T sk, 21°C), and the mean body temperature-change in M˙(ΔM˙) relationship. Rectal temperature (Tre) was higher ( P < 0.05) before (Δ = 0.4°C) and throughout CWI during 1500. The change in Tre was greater ( P < 0.05) at 1500 (−1.4°C) vs. 0700 (−1.2°C), likely because of the higher Tre-T skgradient (0.3°C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial Tcore.


2015 ◽  
Vol 50 (8) ◽  
pp. 792-799 ◽  
Author(s):  
Kevin C. Miller ◽  
Erik E. Swartz ◽  
Blaine C. Long

Context Current treatment recommendations for American football players with exertional heatstroke are to remove clothing and equipment and immerse the body in cold water. It is unknown if wearing a full American football uniform during cold-water immersion (CWI) impairs rectal temperature (Trec) cooling or exacerbates hypothermic afterdrop. Objective To determine the time to cool Trec from 39.5°C to 38.0°C while participants wore a full American football uniform or control uniform during CWI and to determine the uniform's effect on Trec recovery postimmersion. Design Crossover study. Setting Laboratory. Patients or Other Participants A total of 18 hydrated, physically active, unacclimated men (age = 22 ± 3 years, height = 178.8 ± 6.8 cm, mass = 82.3 ± 12.6 kg, body fat = 13% ± 4%, body surface area = 2.0 ± 0.2 m2). Intervention(s) Participants wore the control uniform (undergarments, shorts, crew socks, tennis shoes) or full uniform (control plus T-shirt; tennis shoes; jersey; game pants; padding over knees, thighs, and tailbone; helmet; and shoulder pads). They exercised (temperature approximately 40°C, relative humidity approximately 35%) until Trec reached 39.5°C. They removed their T-shirts and shoes and were then immersed in water (approximately 10°C) while wearing each uniform configuration; time to cool Trec to 38.0°C (in minutes) was recorded. We measured Trec (°C) every 5 minutes for 30 minutes after immersion. Main Outcome Measure(s) Time to cool from 39.5°C to 38.0°C and Trec. Results The Trec cooled to 38.0°C in 6.19 ± 2.02 minutes in full uniform and 8.49 ± 4.78 minutes in control uniform (t17 = −2.1, P = .03; effect size = 0.48) corresponding to cooling rates of 0.28°C·min−1 ± 0.12°C·min−1 in full uniform and 0.23°C·min−1 ± 0.11°C·min−1 in control uniform (t17 = 1.6, P = .07, effect size = 0.44). The Trec postimmersion recovery did not differ between conditions over time (F1,17 = 0.6, P = .59). Conclusions We speculate that higher skin temperatures before CWI, less shivering, and greater conductive cooling explained the faster cooling in full uniform. Cooling rates were considered ideal when the full uniform was worn during CWI, and wearing the full uniform did not cause a greater postimmersion hypothermic afterdrop. Clinicians may immerse football athletes with hyperthermia wearing a full uniform without concern for negatively affecting body-core cooling.


2005 ◽  
Vol 17 (04) ◽  
pp. 159-166 ◽  
Author(s):  
F. TARLOCHAN ◽  
S. RAMESH

In the present paper a heat transfer (HT) model to estimate survival time of individual stranded in cold water such as at sea is proposed. The HT model was derived based on the assumption that the body specific heat capacity and thermal conductance are not time dependent. The solution to the HT model simulates expected survival time as a function of water temperature, metabolism rate, skin, muscle and fat thickness, insulation thermal conductivity and thickness, height and weight of the subject. Although, these predictions must be considered approximate due to the complex nature of the variables involved, the proposed HT model can be employed to determine supplemental body insulation such as personal protective clothing to meet a predefined survival time in any given water temperature. In particular, the results obtained are useful as a decision aid in search and rescue mission in predicting survival time for shipwreck victims at sea.


1968 ◽  
Vol 71 (1) ◽  
pp. 61-66 ◽  
Author(s):  
M. E. D. Webster ◽  
K. G. Johnson

SummarySkin temperatures, deep body temperatures and respiratory rates have been measured in Southdown and Merino sheep following feeding, and during infra-red irradiation, rumen infusions of hot and cold water, and cold exposure induced by shearing. The increases in respiratory rate and skin temperatures induced by infra-red heating and the heat increment of feeding were reversed by addition of iced water to the rumen and were suppressed by shearing. These responses could not be systematically related to particular body temperatures in the sheep and appeared to be continuously variable rather than ‘all-or-none’ phenomena. Considerable overlap was observed between respiratory and vasomotor mechanisms of thermoregulation. Measurements of the surface area and weight of ears and legs showed that these regions contribute approximately 23% of the surface area and 8% of the body weight in Merino sheep. Calculations suggested that up to 70% of the additional heat produced in the 2 h after feeding in sheep may be stored in the tissues through increase in mean body temperature. Sheep kept in short wool throughout the winter appeared to establish a new thermoregulatory ‘set-point’ associated with lower rectal temperatures than those in sheep with a full fleece.


2009 ◽  
Vol 12 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Jeremiah J. Peiffer ◽  
Chris R. Abbiss ◽  
Kazunori Nosaka ◽  
Jonathan M. Peake ◽  
Paul B. Laursen

1992 ◽  
Vol 262 (4) ◽  
pp. R617-R623 ◽  
Author(s):  
K. B. Pandolf ◽  
R. W. Gange ◽  
W. A. Latzka ◽  
I. H. Blank ◽  
A. J. Young ◽  
...  

Thermoregulatory responses during cold-water immersion (water temperature 22 degrees C) were compared in 10 young men before as well as 24 h and 1 wk after twice the minimal erythemal dose of ultraviolet-B radiation that covered approximately 85% of the body surface area. After 10 min of seated rest in cold water, the mean exercised for 50 min on a cycle ergometer (approximately 51% of maximal aerobic power). Rectal temperature, regional and mean heat flow (hc), mean skin temperature from five sites, and hearrt rate were measured continuously for all volunteers while esophageal temperature was measured for six subjects. Venous blood samples were collected before and after cold water immersion. The mean skin temperature was higher (P less than 0.05) throughout the 60-min cold water exposure both 24 h and 1 wk after sunburn compared with before sunburn. Mean hc was higher (P less than 0.05) after 10 min resting immersion and during the first 10 min of exercise when 24 h postsunburn was compared with presunburn, with the difference attributed primarily to higher hc from the back and chest. While rectal temperature and heart rate did not differ between conditions, esophageal temperature before immersion and throughout the 60 min of cold water immersion was higher (P less than 0.05) when 24 h postsunburn was compared with presunburn. Plasma volume increased (P less than 0.05) after 1 wk postsunburn compared with presunburn, whereas plasma protein concentration was reduced (P less than 0.05). After exercise cortisol was greater (P less than 0.05) 24 h postsunburn compared with either presunburn or 1 wk postsunburn.(ABSTRACT TRUNCATED AT 250 WORDS)


1961 ◽  
Vol 16 (4) ◽  
pp. 617-623 ◽  
Author(s):  
J. A. Hildes ◽  
Laurence Irving ◽  
J. S. Hart

Heat flow from hands immersed in cold water was studied in nine Eskimo and four white subjects. To assess the loss of heat from the hand circulation, the change in heat content of the hand during cold water immersion was first calculated from derived average hand temperatures. After 30 min cold water immersion, average hand temperatures were found to be approximately 6.5 C higher than the water. Derived values for circulatory heat loss averaged 15,564 cal for the Eskimos and 13,815 cal for the white subjects when the room temperature was 25 ± 2 C, and 11,167 cal and 10,610 cal, respectively, when the room temperature was 15 ± 2 C. However, an inverse relationship between hand volume and heat flow per 100 ml hand was found, and when considered on this basis no difference could be made out between the two groups although the number of subjects was too small for statistical comparison. The possibility that differences reported in the literature between groups of subjects are related to differences in hand size is discussed. Submitted on January 23, 1961


2017 ◽  
Vol 12 (1) ◽  
pp. 2-9 ◽  
Author(s):  
Jessica M. Stephens ◽  
Shona Halson ◽  
Joanna Miller ◽  
Gary J. Slater ◽  
Christopher D. Askew

The use of cold-water immersion (CWI) for postexercise recovery has become increasingly prevalent in recent years, but there is a dearth of strong scientific evidence to support the optimization of protocols for performance benefits. While the increase in practice and popularity of CWI has led to multiple studies and reviews in the area of water immersion, the research has predominantly focused on performance outcomes associated with postexercise CWI. Studies to date have generally shown positive results with enhanced recovery of performance. However, there are a small number of studies that have shown CWI to have either no effect or a detrimental effect on the recovery of performance. The rationale for such contradictory responses has received little attention but may be related to nuances associated with individuals that may need to be accounted for in optimizing prescription of protocols. To recommend optimal protocols to enhance athletic recovery, research must provide a greater understanding of the physiology underpinning performance change and the factors that may contribute to the varied responses currently observed. This review focuses specifically on why some of the current literature may show variability and disparity in the effectiveness of CWI for recovery of athletic performance by examining the body temperature and cardiovascular responses underpinning CWI and how they are related to performance benefits. This review also examines how individual characteristics (such as physique traits), differences in water-immersion protocol (depth, duration, temperature), and exercise type (endurance vs maximal) interact with these mechanisms.


Author(s):  
Wélia Yasmin Horacio dos Santos ◽  
Felipe J. Aidar ◽  
Dihogo Gama de Matos ◽  
Roland Van den Tillaar ◽  
Anderson Carlos Marçal ◽  
...  

Background: Recovery from training is vital as it ensures training and performance to continue at high intensities and longer durations to stimulate the body and cause further adaptations. Objective: To evaluate different methods of post-workout recovery in Paralympic powerlifting athletes. Methods: Twelve male athletes participated (25.4 ± 3.3 years; 70.3 ± 12.1 kg). The presence of muscle edema, pain threshold, plasma cytokines, and performance measurement were evaluated five times. The recovery methods used in this study were passive recovery (PR), dry needling (DN), and cold-water immersion (CWI). Results: The data analysis showed that the maximal force decreased compared to the pretest value at 15 min and 2 h. The results also revealed that CWI and DN increased Interleukin 2 (IL-2) levels from 24 to 48 h more than that from 2 h to 24 h. After DN, muscle thickness did not increase significantly in any of the muscles, and after 2 h, muscle thickness decreased significantly again in the major pectoralis muscle. After CWI, pain pressure stabilized after 15 min and increased significantly again after 2 h for acromial pectoralis. Conclusion: The strength training sessions generate several changes in metabolism and different recovery methods contribute differently to maintain homeostasis in Paralympic powerlifting athletes.


Author(s):  
Jonathan P. Wyatt ◽  
Robin N. Illingworth ◽  
Colin A. Graham ◽  
Kerstin Hogg ◽  
Michael J. Clancy ◽  
...  

Hypothermia 254 Frostbite and non-freezing cold injury 257 Drowning and near drowning 258 Diving emergencies 260 Heat illness 264 Electrical injuries 266 Radiation incidents 268 Hypothermia exists when the core temperature (T°)<35°C. Infants and the elderly are at particular risk. In young adults hypothermia is usually due to environmental exposure (eg hill-walking or cold water immersion), or to immobility and impaired conscious level from alcohol or drugs. In the elderly, it is more often a prolonged state of multifactorial origin: common precipitants include unsatisfactory housing, poverty, immobility, lack of cold awareness (autonomic neuropathy, dementia), drugs (sedatives, antidepressants), alcohol, acute confusion, hypothyroidism and infections....


Sign in / Sign up

Export Citation Format

Share Document