Some aspects of body temperature regulation in sheep

1968 ◽  
Vol 71 (1) ◽  
pp. 61-66 ◽  
Author(s):  
M. E. D. Webster ◽  
K. G. Johnson

SummarySkin temperatures, deep body temperatures and respiratory rates have been measured in Southdown and Merino sheep following feeding, and during infra-red irradiation, rumen infusions of hot and cold water, and cold exposure induced by shearing. The increases in respiratory rate and skin temperatures induced by infra-red heating and the heat increment of feeding were reversed by addition of iced water to the rumen and were suppressed by shearing. These responses could not be systematically related to particular body temperatures in the sheep and appeared to be continuously variable rather than ‘all-or-none’ phenomena. Considerable overlap was observed between respiratory and vasomotor mechanisms of thermoregulation. Measurements of the surface area and weight of ears and legs showed that these regions contribute approximately 23% of the surface area and 8% of the body weight in Merino sheep. Calculations suggested that up to 70% of the additional heat produced in the 2 h after feeding in sheep may be stored in the tissues through increase in mean body temperature. Sheep kept in short wool throughout the winter appeared to establish a new thermoregulatory ‘set-point’ associated with lower rectal temperatures than those in sheep with a full fleece.

2003 ◽  
Vol 95 (1) ◽  
pp. 89-96 ◽  
Author(s):  
Peter Tikuisis

Certain previous studies suggest, as hypothesized herein, that heat balance (i.e., when heat loss is matched by heat production) is attained before stabilization of body temperatures during cold exposure. This phenomenon is explained through a theoretical analysis of heat distribution in the body applied to an experiment involving cold water immersion. Six healthy and fit men (mean ± SD of age = 37.5 ± 6.5 yr, height = 1.79 ± 0.07 m, mass = 81.8 ± 9.5 kg, body fat = 17.3 ± 4.2%, maximal O2 uptake = 46.9 ± 5.5 l/min) were immersed in water ranging from 16.4 to 24.1°C for up to 10 h. Core temperature (Tco) underwent an insignificant transient rise during the first hour of immersion, then declined steadily for several hours, although no subject's Tco reached 35°C. Despite the continued decrease in Tco, shivering had reached a steady state of ∼2 × resting metabolism. Heat debt peaked at 932 ± 334 kJ after 2 h of immersion, indicating the attainment of heat balance, but unexpectedly proceeded to decline at ∼48 kJ/h, indicating a recovery of mean body temperature. These observations were rationalized by introducing a third compartment of the body, comprising fat, connective tissue, muscle, and bone, between the core (viscera and vessels) and skin. Temperature change in this “mid region” can account for the incongruity between the body's heat debt and the changes in only the core and skin temperatures. The mid region temperature decreased by 3.7 ± 1.1°C at maximal heat debt and increased slowly thereafter. The reversal in heat debt might help explain why shivering drive failed to respond to a continued decrease in Tco, as shivering drive might be modulated by changes in body heat content.


1960 ◽  
Vol 11 (5) ◽  
pp. 871 ◽  
Author(s):  
DF Dowling

An experiment was performed to test the effect of solar radiation on the body temperatures of cattle, both clipped and with hair coat, in a clear transparent plastic covering as compared with cattle in a white reflective plastic covering. The mean body temperature of the animals in white plastic coats was 0.15°F lower than that of animals in clear plastic coats. This difference was highly significant statistically (P< 0.001). Animals in both clear and white coats had higher body temperatures than controls without plastic coats. The difference was highly significant, and was about 1.5°F in the clipped animals.


1968 ◽  
Vol 10 (3) ◽  
pp. 265-282 ◽  
Author(s):  
J. Slee

1. Scottish Blackface and Tasmanian Merino one-year-old males were exposed to cold in climate chambers. The environmental temperature fell slowly from +10°C to −15°C in the first experiment when the sheep were in full fleece and from +30°C to −5°C in the second experiment when the same sheep were closely shorn. In the second experiment each sheep received two identical exposures separated by one day spent in a cool environment. Rectal temperatures and skin temperatures on the body and the extremities were recorded.2. In experiment 1 skin temperatures on the feet and ears generally fell sharply due to vasoconstriction, especially in the Blackface sheep. The Blackface sheep showed earlier and more intense vasoconstriction than the Merinos.3. In experiment 2 foot and ear skin temperatures fell smoothly with gradual vasoconstriction. In contrast to experiment 1, both breeds were similar in the time of onset of vasoconstriction. Foot temperatures, however, were significantly higher and vasoconstriction correspondingly later during the second exposure of experiment 2 than during the first exposure.4. The skin temperature at which vasoconstriction occurred remained similar irrespective of breed, shearing or exposure occasion. But the ambient temperature at vasoconstriction was significantly influenced by all these variables.5. Cold-induced vasodilatations were more frequent in experiment 1 than in experiment 2.6. Retarded vasoconstriction among the Merinos in experiment 1 could, except for two sheep, be accounted for by their superior fleece cover. In experiment 2, the delayed foot vasoconstriction on second exposure was attributed to increased blood flow resulting from acclimatization.


1985 ◽  
Vol 58 (3) ◽  
pp. 770-777 ◽  
Author(s):  
A. H. Wolff ◽  
S. R. Coleshaw ◽  
C. G. Newstead ◽  
W. R. Keatinge

Flow of water under foam neoprene wet suits could halve insulation that the suits provided, even at rest in cold water. On the trunk conductance of this flow was approximately 6.6 at rest and 11.4 W . m-2 . C-1 exercising; on the limbs, it was only 3.4 at rest and 5.8 W . m-2 . degrees C-1 exercising; but during vasoconstriction in the cold, skin temperatures on distal parts of limbs were lower than were those of the trunk, allowing adequate metabolic responses. In warm water, minor postural changes and movement made flow under suits much higher, approximately 60 on trunk and 30 W . m-2 . degrees C-1 on limbs, both at rest and at work. These changes in flow allowed for a wide range of water temperatures at which people could stabilize body temperature in any given suit, neither overheating when exercising nor cooling below 35 degrees C when still. Even thin people with 4- or 7- mm suits covering the whole body could stabilize their body temperatures in water near 10 degrees C in spite of cold vasodilatation. Equations to predict limits of water temperature for stability with various suits and fat thicknesses are given.


1975 ◽  
Vol 39 (2) ◽  
pp. 226-230 ◽  
Author(s):  
J. Timbal ◽  
J. Colin ◽  
C. Boutelier

Sweat rates and body temperatures of human subjects were measured at 0200, 1000, and 1800 h during a heat exposure of 90 min. The latent period of sweating was not significantly altered in the evening but significantly shortened during the night. Mean body temperature corresponding to the onset of sweating was nearer to the basal body temperature during the night, while during the day the difference between these two temperatures became larger. This phenomenon seems related to the circadian cycle of vasomotor adjustment, since during the night body conductance was higher than during the day and corresponded to a state of a vasodilatation similar to that observed at the onset of sweating. During the day, this situation was reversed. During steady state, the following changes were observed: sweating rate, night less than morning less than evening; skin temperatures, night less than morning less than evening; and rectal temperature increase, morning less than evening less than night. It is hypothesized that these changes are due to either different metabolic rates or an imbalance between heat gains and losses which preserve the circadian rhythm of the body temperature, even under thermal loads.


2018 ◽  
Vol 66 (4) ◽  
pp. 235 ◽  
Author(s):  
Luh P. E. K. Yuni ◽  
Susan M. Jones ◽  
Erik Wapstra

Body temperatures in ectotherms are strongly affected by their thermal environment. Ectotherms respond to variation in the thermal environment either by modification of behavioural thermoregulation to maintain their optimal body temperature or by shifting their optimal body temperature. In this study, the body temperatures of males of three populations of spotted snow skinks, Niveoscincus ocellatus, living along an altitudinal gradient (low, mid, and high altitude) were studied in the field and laboratory in spring, summer, and autumn, representing the full activity period of this species. The environmental variation across both sites and seasons affected their field active body temperatures. At the low and mid altitude, N. ocellatus had a higher mean body temperature than at the high altitude. Animals achieved their thermal preference at the low and mid altitude sites in all seasons. At the high altitude, however, N. ocellatus struggled to reach its preferred body temperatures, especially in autumn. The lower body temperature at the high-altitude site is likely due to limited thermal opportunity and/or an effect of avoiding the costs associated with increased intensity of basking.


1993 ◽  
Vol 71 (11) ◽  
pp. 2152-2155 ◽  
Author(s):  
Geoffrey R. Smith ◽  
Royce E. Ballinger ◽  
Justin D. Congdon

The thermal ecology of a high-altitude lizard, Sceloporus scalaris, was investigated in the Chiricahua Mountains of southeastern Arizona, where the lizards are active on sunny days throughout the year. Mean body temperature was 32.6 °C (range 12.6–39 °C) and mean air temperature was 20.2 °C (range 5.2–36.4 °C). The slope of the body temperature versus air temperature regression was 0.23. Monthly differences in body temperature were observed, with the highest body temperatures observed in early summer. Lizards at three study sites with differing slope and vegetative cover had different mean body temperatures. Males had higher body temperatures than both nongravid and gravid females. Maintenance of elevated body temperatures even during winter lengthens the activity and growing season, permitting early maturity with potentially important life-history consequences.


2021 ◽  
Vol 5 (3) ◽  
pp. 543-549
Author(s):  
Helmy Yudhistira Putra ◽  
Utomo Budiyanto

During the COVID-19 pandemic, the price of preventive equipment such as masks and hand sanitizers has increased significantly. Likewise, thermometers are experiencing an increase and scarcity, this tool is also sought after by many companies for screening employees and guests before entering the building to detect body temperatures that are suspected of being positive for COVID-19. The use of a thermometer operated by humans is very risky because dealing directly with people who could be ODP (People Under Monitoring/Suscpected ) or even positive for COVID-19, therefore we need tools for automatic body temperature screening and do not involve humans for the examination. This research uses the MLX-90614 body temperature sensor equipped with an ultrasonic support sensor to detect movement and measure the distance between the forehead and the temperature sensor so that the body heat measurement works optimally, and a 16x2 LCD to display the temperature measurement results. If the measured body temperature is more than 37.5 ° C degrees Celsius then the buzzer will turn on and the selenoid door lock will not open and will send a notification to the Telegram messaging application. The final result obtained is the formation of a prototype device for measuring body temperature automatically without the need to involve humans in measuring body temperature to control people who want to enter the building so as to reduce the risk of COVID-19 transmission


2015 ◽  
Vol 36 (6Supl2) ◽  
pp. 4575
Author(s):  
Julyana Machado da Silva Martins ◽  
Evandro De Abreu Fernandes ◽  
João Paulo Rodrigues Bueno ◽  
Carolina Magalhães Caires Carvalho ◽  
Fernanda Heloisa Litz ◽  
...  

<p>The objective of this study was to evaluate the effect of different nutritional plans on the body temperature and organ biometrics in male and female broilers, of two ages. Here, 1,700 birds were used (850 males and 850 females) in a completely randomized design composed of five treatments (- 3%, - 1.5%, reference, + 1.5% and + 3%), with 10 repetitions, totaling 50 experimental units; the reference treatment based on nutritional and energy levels indicated in previous studies was calculated from this. At 35 and 42 d, the temperatures of the wing, head, shin, back, and cloaca in males and females were measured separately, and the average surface and body temperature were calculated. At 42 d, relative weights of the gizzard, liver, heart, and small intestine were calculated. The temperatures of the wings, back, and cloaca, and consequently the average surface temperature and body temperatures, were not affected by nutritional plans. Effects of increasing the nutritional and energy levels were observed on liver weights, the gizzard, and the small intestine. We conclude that the nutritional plans did not affect body temperature. Males had higher body temperatures than females. Body temperature increased with increase in age, and the increase in the nutritional plans increased liver weight and reduced the gizzard weights.</p>


1994 ◽  
Vol 44 (4) ◽  
pp. 583-587
Author(s):  
Minoru HIGASA ◽  
Iwao YAMAMOTO ◽  
Ichiro NARIKAWA
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document