Target-Specific Short-Term Dynamics Are Important for the Function of Synapses in an Oscillatory Neural Network

2005 ◽  
Vol 94 (4) ◽  
pp. 2590-2602 ◽  
Author(s):  
Akira Mamiya ◽  
Farzan Nadim

Short-term dynamics such as facilitation and depression are present in most synapses and are often target-specific even for synapses from the same type of neuron. We examine the dynamics and possible functions of two synapses from the same presynaptic neuron in the rhythmically active pyloric network of the spiny lobster. Using simultaneous recordings, we show that the synapses from the lateral pyloric (LP) neuron to the pyloric dilator (PD; a member of the pyloric pacemaker ensemble) and the pyloric constrictor (PY) neurons both show short-term depression. However, the postsynaptic potentials produced by the LP-to-PD synapse are larger in amplitude, depress less, and recover faster than those produced by the LP-to-PY synapse. The main function of the LP-to-PD synapse is to slow down the pyloric rhythm. However, in some cases, it slows down the rhythm only when it is fast and has no effect or to speeds up when it is slow. In contrast, the LP-to-PY synapse functions to delay the activity of the PY neuron; this delay increases as the cycle period becomes longer. Using a computational model, we show that the short-term dynamics of synaptic depression observed for each of these synapses are tailored to their individual functions and that replacing the dynamics of either synapse with the other would disrupt these functions. Together, the experimental and modeling results suggest that the target-specific features of short-term synaptic depression are functionally important for synapses efferent from the same presynaptic neuron.

2012 ◽  
Vol 108 (10) ◽  
pp. 2846-2856 ◽  
Author(s):  
Mark D. Kvarta ◽  
Ronald M. Harris-Warrick ◽  
Bruce R. Johnson

Synapses show short-term activity-dependent dynamics that alter the strength of neuronal interactions. This synaptic plasticity can be tuned by neuromodulation as a form of metaplasticity. We examined neuromodulator-induced metaplasticity at a graded chemical synapse in a model central pattern generator (CPG), the pyloric network of the spiny lobster stomatogastric ganglion. Dopamine, serotonin, and octopamine each produce a unique motor pattern from the pyloric network, partially through their modulation of synaptic strength in the network. We characterized synaptic depression and its amine modulation at the graded synapse from the pyloric dilator neuron to the lateral pyloric neuron (PD→LP synapse), driving the PD neuron with both long square pulses and trains of realistic waveforms over a range of presynaptic voltages. We found that the three amines can differentially affect the amplitude of graded synaptic transmission independently of the synaptic dynamics. Low concentrations of dopamine had weak and variable effects on the strength of the graded inhibitory postsynaptic potentials (gIPSPs) but reliably accelerated the onset of synaptic depression and recovery from depression independently of gIPSP amplitude. Octopamine enhanced gIPSP amplitude but decreased the amount of synaptic depression; it slowed the onset of depression and accelerated its recovery during square pulse stimulation. Serotonin reduced gIPSP amplitude but increased the amount of synaptic depression and accelerated the onset of depression. These results suggest that amine-induced metaplasticity at graded chemical synapses can alter the parameters of synaptic dynamics in multiple and independent ways.


2011 ◽  
Vol 105 (1) ◽  
pp. 293-304 ◽  
Author(s):  
Bruce R. Johnson ◽  
Jessica M. Brown ◽  
Mark D. Kvarta ◽  
Jay Y. J. Lu ◽  
Lauren R. Schneider ◽  
...  

Neuromodulators modify network output by altering neuronal firing properties and synaptic strength at multiple sites; however, the functional importance of each site is often unclear. We determined the importance of monoamine modulation of a single synapse for regulation of network cycle frequency in the oscillatory pyloric network of the lobster. The pacemaker kernel of the pyloric network receives only one chemical synaptic feedback, an inhibitory synapse from the lateral pyloric (LP) neuron to the pyloric dilator (PD) neurons, which can limit cycle frequency. We measured the effects of dopamine (DA), octopamine (Oct), and serotonin (5HT) on the strength of the LP→PD synapse and the ability of the modified synapse to regulate pyloric cycle frequency. DA and Oct strengthened, whereas 5HT weakened, LP→PD inhibition. Surprisingly, the DA-strengthened LP→PD synapse lost its ability to slow the pyloric oscillations, whereas the 5HT-weakened LP→PD synapse gained a greater influence on the oscillations. These results are explained by monoamine modulation of factors that determine the firing phase of the LP neuron in each cycle. DA acts via multiple mechanisms to phase-advance the LP neuron into the pacemaker's refractory period, where the strengthened synapse has little effect. In contrast, 5HT phase-delays LP activity into a region of greater pacemaker sensitivity to LP synaptic input. Only Oct enhanced LP regulation of cycle period simply by enhancing LP→PD synaptic strength. These results show that modulation of the strength and timing of a synaptic input can differentially affect the synapse's efficacy in the network.


2007 ◽  
Vol 97 (3) ◽  
pp. 2239-2253 ◽  
Author(s):  
Pascale Rabbah ◽  
Farzan Nadim

Many rhythmically active networks involve heterogeneous populations of pacemaker neurons with potentially distinct synaptic outputs that can be differentially targeted by extrinsic inputs or neuromodulators, thereby increasing possible network output patterns. To understand the roles of heterogeneous pacemaker neurons, we characterized differences in synaptic output from the anterior burster (AB) and pyloric dilator (PD) neurons in the lobster pyloric network. These intrinsically distinct neurons are strongly electrically coupled, coactive, and constitute the pyloric pacemaker ensemble. During pyloric oscillations, the pacemaker neurons produce compound inhibitory synaptic connections to the follower lateral pyloric (LP) and pyloric constrictor (PY) neurons, which fire out of phase with AB/PD and with different delay times. Using pharmacological blockers, we separated the synapses originating from the AB and PD neurons and investigated their temporal dynamics. These synapses exhibited distinct short-term dynamics, depending on the presynaptic neuron type, and had different relative contributions to the total synaptic output depending on waveform shape and cycle frequency. However, paired comparisons revealed that the amplitude or dynamics of synapses from either the AB or PD neuron did not depend on the postsynaptic neuron type, LP or PY. To address the functional implications of these findings, we examined the correlation between synaptic inputs from the pacemakers and the burst onset phase of the LP and PY neurons in the ongoing pyloric rhythm. These comparisons showed that the activity of the LP and PY neurons is influenced by the peak phase and amplitude of the synaptic inputs from the pacemaker neurons.


2002 ◽  
Vol 88 (6) ◽  
pp. 3218-3231 ◽  
Author(s):  
Yan Li ◽  
R. E. Burke

We examined age-dependent changes in short-term synaptic depression of monosynaptic excitatory postsynaptic potentials (EPSPs) recorded in lumbar motoneurons in hemisected spinal cords of neonatal Swiss-Webster mice between postnatal day 2 (P2) and 12 (P12). We used four paradigms that sample the input-output dependence on stimulation history in different but complementary ways: 1) paired-pulse depression; 2) steady-state depression during constant frequency trains; 3) modulation during irregular stimulation sequences; and 4) recovery after high-frequency conditioning trains. Paired-pulse synaptic depression declined more than steady-state depression during 10-pulse trains at frequencies from 0.125 to 8 Hz in this age range. Depression during sequences of irregular stimulations that more closely mimic physiological activation also declined with postnatal age. On the other hand, the overall rate of synaptic recovery after a 4-Hz conditioning train exhibited surprisingly little change between P2 and P12. Control experiments indicated that these observations depend primarily, if not exclusively, on changes in presynaptic transmitter release. The data were examined using quantitative models that incorporate factors that have been suggested to exist at more specialized central synapses. The model that best predicted the observations included two presynaptic compartments that are depleted during activation, plus two superimposed processes that enhance transmitter release by different mechanisms. One of the latter produced rapidly-decaying enhancement of transmitter release fraction. The other mechanism indirectly enhanced the rate of renewal of one of the depleted presynaptic compartments. This model successfully predicted the constant frequency and irregular sequence data from all age groups, as well as the recovery curves following short, high-frequency tetani. The results suggest that a reduction in release fraction accounts for much of the decline in synaptic depression during early postnatal development, although changes in both enhancement processes also contribute. The time constants of resource renewal showed surprisingly little change through the first 12 days of postnatal life.


2006 ◽  
Vol 95 (3) ◽  
pp. 1762-1770 ◽  
Author(s):  
Vatsala Thirumalai ◽  
Astrid A. Prinz ◽  
Christian D. Johnson ◽  
Eve Marder

The neuropeptide, red pigment concentrating hormone (RPCH), strengthened the inhibitory synapse from the lateral pyloric (LP) neuron to the pyloric dilator (PD) neurons in the pyloric network of the stomatogastric ganglion (STG) of the lobster, Homarus americanus. RPCH produced several-fold increases in the amplitude of both action potential–mediated and non–impulse-mediated transmission that persisted for as long as the peptide remained present. Because the LP to PD synapse is the only feedback to the pacemaker kernel of the pyloric network, which consists of the electrically coupled two PD neurons and the anterior burster (AB) neuron, it might have been expected that strengthening the LP to PD synapse would increase the period of the pyloric rhythm. However, the period of the pyloric rhythm increased only transiently in RPCH, and a transient increase in cycle period was observed even when the LP neuron was hyperpolarized. Phase response curves were measured using the dynamic clamp to create artificial inhibitory inputs of variable strength and duration to the PD neurons. Synaptic conductance values seen in normal saline were ineffective at changing the pyloric period throughout the pyloric cycle. Conductances similar to those seen in 10−6 M RPCH also did not evoke phase resets at phases when the LP neuron is typically active. Thus the dramatic effects of RPCH on synaptic strength have little role in modulation of the period of the pyloric rhythm under normal operating conditions but may help to stabilize the rhythm when the cycle period is too slow or too fast.


Author(s):  
Stefan Scherbaum ◽  
Simon Frisch ◽  
Maja Dshemuchadse

Abstract. Folk wisdom tells us that additional time to make a decision helps us to refrain from the first impulse to take the bird in the hand. However, the question why the time to decide plays an important role is still unanswered. Here we distinguish two explanations, one based on a bias in value accumulation that has to be overcome with time, the other based on cognitive control processes that need time to set in. In an intertemporal decision task, we use mouse tracking to study participants’ responses to options’ values and delays which were presented sequentially. We find that the information about options’ delays does indeed lead to an immediate bias that is controlled afterwards, matching the prediction of control processes needed to counter initial impulses. Hence, by using a dynamic measure, we provide insight into the processes underlying short-term oriented choices in intertemporal decision making.


2018 ◽  
pp. 49-68 ◽  
Author(s):  
M. E. Mamonov

Our analysis documents that the existence of hidden “holes” in the capital of not yet failed banks - while creating intertemporal pressure on the actual level of capital - leads to changing of maturity of loans supplied rather than to contracting of their volume. Long-term loans decrease, whereas short-term loans rise - and, what is most remarkably, by approximately the same amounts. Standardly, the higher the maturity of loans the higher the credit risk and, thus, the more loan loss reserves (LLP) banks are forced to create, increasing the pressure on capital. Banks that already hide “holes” in the capital, but have not yet faced with license withdrawal, must possess strong incentives to shorten the maturity of supplied loans. On the one hand, it raises the turnovers of LLP and facilitates the flexibility of capital management; on the other hand, it allows increasing the speed of shifting of attracted deposits to loans to related parties in domestic or foreign jurisdictions. This enlarges the potential size of ex post revealed “hole” in the capital and, therefore, allows us to assume that not every loan might be viewed as a good for the economy: excessive short-term and insufficient long-term loans can produce the source for future losses.


2019 ◽  
Vol 9 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Dandan Irawan

Basically a natural partnership will achieve its goal if mutual requirements, mutual reinforcement, and mutual benefit can be maintained and made a strong fundamental commitment among partners. Nevertheless the development seems very slow. The cause is the presence of specific and different conditions and structure factors compared to other countries. Along with that, we still encounter various forms of gaps, such as inequality among regions, among income groups, between sectors, among economic actors, and so forth. The next problem is that in business entities including cooperatives and micro and small enterprises in running their business activities requires business partnerships with medium and large enterprises in order to improve business performance and business scale. While on the other hand our economic conditions and structures are not yet fully conducive to fostering partnerships based on purely business considerations or competitive market motivations but the business partnership of the foundation is strong enough in our country's constitution. Partnerships will work if partners are equally benefiting. Our concept of partnership is like that, although in the short term, there is a party or a party benefiting more from the other side.


1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


2020 ◽  
Vol 12 (45) ◽  
pp. 63-66
Author(s):  
Halim Nagem Filho ◽  
Reinaldo Francisco Maia ◽  
Reinaldo Missaka ◽  
Nasser Hussein Fares

The osseointegration is the stable and functional union between the bone and a titanium surface. A new bone can be found on the surface of the implant about 1 week after its installation; the bone remodeling begins between 6 and 12 weeks and continues throughout life. After the implant insertion, depending on the energy of the surface, the plasma fluid immediately adheres, in close contact with the surface, promoting the adsorption of proteins and inducing the indirect interaction of the cells with the material. Macrophages are cells found in the tissues and originated from bone marrow monocytes. The M1 macrophages orchestrate the phagocytic phase in the inflammatory region and also produce inflammatory cytokines involved with the chronic inflammation and the cleaning of the wound and damaged tissues from bacteria. On the other hand, alternative-activated macrophages (M2) are activated by IL-10, the immune complex. Its main function consists on regulating negatively the inflammation through the secretion of the immunosuppressant IL-10. The M2 macrophages present involvement with the immunosuppression, besides having a low capacity for presenting antigens and high production of cytokines; these can be further divided into M2a, M2b, and M2c, based on the gene expression profile.


Sign in / Sign up

Export Citation Format

Share Document