scholarly journals High-level language processing regions are not engaged in action observation or imitation

2018 ◽  
Vol 120 (5) ◽  
pp. 2555-2570 ◽  
Author(s):  
Brianna L. Pritchett ◽  
Caitlyn Hoeflin ◽  
Kami Koldewyn ◽  
Eyal Dechter ◽  
Evelina Fedorenko

A set of left frontal, temporal, and parietal brain regions respond robustly during language comprehension and production (e.g., Fedorenko E, Hsieh PJ, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. J Neurophysiol 104: 1177–1194, 2010; Menenti L, Gierhan SM, Segaert K, Hagoort P. Psychol Sci 22: 1173–1182, 2011). These regions have been further shown to be selective for language relative to other cognitive processes, including arithmetic, aspects of executive function, and music perception (e.g., Fedorenko E, Behr MK, Kanwisher N. Proc Natl Acad Sci USA 108: 16428–16433, 2011; Monti MM, Osherson DN. Brain Res 1428: 33–42, 2012). However, one claim about overlap between language and nonlinguistic cognition remains prominent. In particular, some have argued that language processing shares computational demands with action observation and/or execution (e.g., Rizzolatti G, Arbib MA. Trends Neurosci 21: 188–194, 1998; Koechlin E, Jubault T. Neuron 50: 963–974, 2006; Tettamanti M, Weniger D. Cortex 42: 491–494, 2006). However, the evidence for these claims is indirect, based on observing activation for language and action tasks within the same broad anatomical areas (e.g., on the lateral surface of the left frontal lobe). To test whether language indeed shares machinery with action observation/execution, we examined the responses of language brain regions, defined functionally in each individual participant (Fedorenko E, Hsieh PJ, Nieto-Castañón A, Whitfield-Gabrieli S, Kanwisher N. J Neurophysiol 104: 1177–1194, 2010) to action observation ( experiments 1, 2, and 3a) and action imitation ( experiment 3b). With the exception of the language region in the angular gyrus, all language regions, including those in the inferior frontal gyrus (within “Broca’s area”), showed little or no response during action observation/imitation. These results add to the growing body of literature suggesting that high-level language regions are highly selective for language processing (see Fedorenko E, Varley R. Ann NY Acad Sci 1369: 132–153, 2016 for a review). NEW & NOTEWORTHY Many have argued for overlap in the machinery used to interpret language and others’ actions, either because action observation was a precursor to linguistic communication or because both require interpreting hierarchically-structured stimuli. However, existing evidence is indirect, relying on group analyses or reverse inference. We examined responses to action observation in language regions defined functionally in individual participants and found no response. Thus language comprehension and action observation recruit distinct circuits in the modern brain.

2021 ◽  
Author(s):  
Tamar I Regev ◽  
Josef Affourtit ◽  
Xuanyi Chen ◽  
Abigail E Schipper ◽  
Leon Bergen ◽  
...  

A network of left frontal and temporal brain regions supports 'high-level' language processing-including the processing of word meanings, as well as word-combinatorial processing-across presentation modalities. This 'core' language network has been argued to store our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about sounds (phonemes) and how they combine to form clusters, syllables, and words. Is this knowledge of phoneme combinatorics also represented in these language regions? Across five fMRI experiments, we investigated the sensitivity of high-level language processing brain regions to sub-lexical linguistic sound patterns by examining responses to diverse nonwords-sequences of sounds/letters that do not constitute real words (e.g., punes, silory, flope). We establish robust responses in the language network to visually (Experiment 1a, n=605) and auditorily (Experiments 1b, n=12, and 1c, n=13) presented nonwords relative to baseline. In Experiment 2 (n=16), we find stronger responses to nonwords that obey the phoneme-combinatorial constraints of English. Finally, in Experiment 3 (n=14) and a post-hoc analysis of Experiment 2, we provide suggestive evidence that the responses in Experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that knowledge of phoneme combinatorics and representations of sub-lexical linguistic sound patterns are stored within the same fronto-temporal network that stores higher-level linguistic knowledge and supports word and sentence comprehension.


2020 ◽  
Author(s):  
William Matchin ◽  
Alexandra Basilakos ◽  
Dirk-Bart den Ouden ◽  
Brielle C. Stark ◽  
Gregory Hickok ◽  
...  

AbstractIn the early and mid 1800s, scientists debated whether the human brain was functionally differentiated with respect to cognition. The issue was largely resolved when specific language impairments were identified following focal patterns of brain damage. However, neuroimaging has revived this discussion, as many studies find similar syntactic and semantic effects across the set of brain regions implicated in language. Here we address this modern debate using lesion-symptom mapping in two large, partially-overlapping groups of people with left hemisphere brain damage due to stroke (N=121, N=92). We identified multiple measure by region interaction effects, associating damage to the posterior middle temporal gyrus with syntactic comprehension deficits, damage to posterior inferior frontal gyrus with expressive agrammatism, and damage to inferior angular gyrus with semantic category word fluency deficits. Our results are inconsistent with recent hypotheses that regions of the language network play similar roles in high-level linguistic processing.


2021 ◽  
Vol 30 (6) ◽  
pp. 526-534
Author(s):  
Evelina Fedorenko ◽  
Cory Shain

Understanding language requires applying cognitive operations (e.g., memory retrieval, prediction, structure building) that are relevant across many cognitive domains to specialized knowledge structures (e.g., a particular language’s lexicon and syntax). Are these computations carried out by domain-general circuits or by circuits that store domain-specific representations? Recent work has characterized the roles in language comprehension of the language network, which is selective for high-level language processing, and the multiple-demand (MD) network, which has been implicated in executive functions and linked to fluid intelligence and thus is a prime candidate for implementing computations that support information processing across domains. The language network responds robustly to diverse aspects of comprehension, but the MD network shows no sensitivity to linguistic variables. We therefore argue that the MD network does not play a core role in language comprehension and that past findings suggesting the contrary are likely due to methodological artifacts. Although future studies may reveal some aspects of language comprehension that require the MD network, evidence to date suggests that those will not be related to core linguistic processes such as lexical access or composition. The finding that the circuits that store linguistic knowledge carry out computations on those representations aligns with general arguments against the separation of memory and computation in the mind and brain.


ANALES RANM ◽  
2018 ◽  
Vol 135 (135(02)) ◽  
pp. 41-46
Author(s):  
J.A. Hinojosa ◽  
E.M. Moreno ◽  
P. Ferré ◽  
M.A. Pozo

Up to date the study of the relationship between language and emotion has received little attention from researchers. In the current work we will summarize evidence coming from the fields of developmental psychology and affective neurolinguistics. The results from different studies indicate that learning emotional language has its own idiosyncrasy. Also, the emotional content of words, sentences and texts modulates several levels of language processing, including phonological, lexico-semantic and morpho-syntactic aspects of language comprehension and production. Finally, the interactions between language and emotion involve the activation of several brain regions linked to distinct affective and linguistics processes, like parts of frontal and temporal cortices or subcortical structures such as the amygdala. Overall, the results of these studies clearly show that emotional content determines certain aspects of how we acquire and process language.


2020 ◽  
Author(s):  
Ileana Quiñones ◽  
Nicola Molinaro ◽  
César Caballero-Gaudes ◽  
Simona Mancini ◽  
Juan Andrés Hernández-Cabrera ◽  
...  

AbstractAssessing the synchrony and interplay between distributed neural regions is critical to understanding how language is processed. Here, we investigated possible neuro-functional links between form and meaning during sentence comprehension combining a classical whole-brain approach, which characterizes patterns of brain activation resulting from our experimental manipulation, and a novel multivariate network-based approach, which uses graph-theory measures to unravel the architectural configuration of the language system. Capitalizing on the Spanish gender agreement system, we experimentally manipulated formal and conceptual factors: whether the noun-adjective grammatical gender relationship was congruent or not and whether the noun gender type was semantically informative or strictly formal. Left inferior and middle frontal gyri, as well as left MTG/STG emerged as critical areas for the computation of grammatical relations. We demonstrate how the interface between formal and conceptual features depends on the synergic articulation of brain areas divided in three subnetworks that extend beyond the classical left-lateralized perisylvian language circuit. Critically, we isolated a subregion of the left angular gyrus showing a significant interaction between gender congruency and gender type. The functional interplay between the angular gyrus and left perisylvian language-specific circuit proves crucial for constructing coherent and meaningful messages. Importantly, using graph theory we show that this complex system is functionally malleable: the role each node plays within the network changes depending on the available linguistic cues.Significance StatementNeural networks can be described as graphs comprising distributed and interconnected nodes. These nodes share functional properties but also differ in terms of functional specialization and the number of interconnections mediating the efficient transfer of information. Previous work has shown functional connectivity differences based on graph-theory properties between typical and atypical samples. However, here we have used concepts from graph theory to characterize connectivity during language processing using task-related fMRI. This approach allowed us to demonstrate how linguistic input drives brain network configuration during language comprehension. This is the first evidence of functional flexibility in language networks: the communicative capacity of each hub changes depending on whether the linguistic input grants access to meaning or is purely formal.


2009 ◽  
Vol 21 (11) ◽  
pp. 2085-2099 ◽  
Author(s):  
Cathelijne M. J. Y. Tesink ◽  
Karl Magnus Petersson ◽  
Jos J. A. van Berkum ◽  
Daniëlle van den Brink ◽  
Jan K. Buitelaar ◽  
...  

When interpreting a message, a listener takes into account several sources of linguistic and extralinguistic information. Here we focused on one particular form of extralinguistic information, certain speaker characteristics as conveyed by the voice. Using functional magnetic resonance imaging, we examined the neural structures involved in the unification of sentence meaning and voice-based inferences about the speaker's age, sex, or social background. We found enhanced activation in the inferior frontal gyrus bilaterally (BA 45/47) during listening to sentences whose meaning was incongruent with inferred speaker characteristics. Furthermore, our results showed an overlap in brain regions involved in unification of speaker-related information and those used for the unification of semantic and world knowledge information [inferior frontal gyrus bilaterally (BA 45/47) and left middle temporal gyrus (BA 21)]. These findings provide evidence for a shared neural unification system for linguistic and extralinguistic sources of information and extend the existing knowledge about the role of inferior frontal cortex as a crucial component for unification during language comprehension.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 874 ◽  
Author(s):  
Nora Mehl ◽  
Filip Morys ◽  
Arno Villringer ◽  
Annette Horstmann

Obesity is associated with automatically approaching problematic stimuli, such as unhealthy food. Cognitive bias modification (CBM) could beneficially impact problematic approach behavior. However, it is unclear which mechanisms are targeted by CBM in obesity. Candidate mechanisms include: (1) altering reward value of food stimuli; and (2) strengthening inhibitory abilities. Thirty-three obese adults completed either CBM or sham training during functional magnetic resonance imaging (fMRI) scanning. CBM consisted of implicit training to approach healthy and avoid unhealthy foods. At baseline, approach tendencies towards food were present in all participants. Avoiding vs. approaching food was associated with higher activity in the right angular gyrus (rAG). CBM resulted in a diminished approach bias towards unhealthy food, decreased activation in the rAG, and increased activation in the anterior cingulate cortex. Relatedly, functional connectivity between the rAG and right superior frontal gyrus increased. Analysis of brain connectivity during rest revealed training-related connectivity changes of the inferior frontal gyrus and bilateral middle frontal gyri. Taken together, CBM strengthens avoidance tendencies when faced with unhealthy foods and alters activity in brain regions underpinning behavioral inhibition.


2021 ◽  
Author(s):  
Peng Wang ◽  
Yifei He ◽  
Burkhard Maess ◽  
Jinxing Yue ◽  
Luyao Chen ◽  
...  

Alpha power attenuation during cognitive task performing has been suggested to reflect a process of release of inhibition, increase of excitability, and thereby benefit the improvement of performance. Here, we hypothesized that changes in individual alpha power during the execution of a complex language comprehension task may correlate with the individual performance in that task. We tested this using magnetoencephalography (MEG) recorded during comprehension of German sentences of different syntactic complexity. Results showed that neither the frequency nor the power of the spontaneous oscillatory activity at rest were associated with the individual performance. However, during the execution of a sentences processing task, the individual alpha power attenuation did correlate with individual language comprehension performance. Source reconstruction localized effects in temporal-parietal regions of both hemispheres. While the effect of increased task difficulty is localized in the right hemisphere, the difference in power attenuation between tasks of different complexity exhibiting a correlation with performance was localized in left temporal-parietal brain regions known to be associated with language processing. From our results, we conclude that in-task attenuation of individual alpha power is related to the essential mechanisms of the underlying cognitive processes, rather than merely to general phenomena like attention or vigilance.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bei Luo ◽  
Yue Lu ◽  
Chang Qiu ◽  
Wenwen Dong ◽  
Chen Xue ◽  
...  

BackgroundTransient improvement in motor symptoms are immediately observed in patients with Parkinson’s disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood.PurposeWe utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS.MethodOverall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients.ResultRelative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN).ConclusionThe subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.


2009 ◽  
Vol 21 (6) ◽  
pp. 1135-1145 ◽  
Author(s):  
Tali Bitan ◽  
Jimmy Cheon ◽  
Dong Lu ◽  
Douglas D. Burman ◽  
James R. Booth

We examined age-related changes in the interactions among brain regions in children performing rhyming judgments on visually presented words. The difficulty of the task was manipulated by including a conflict between task-relevant (phonological) information and task-irrelevant (orthographic) information. The conflicting conditions included pairs of words that rhyme despite having different spelling patterns (jazz–has), or words that do not rhyme despite having similar spelling patterns (pint–mint). These were contrasted with nonconflicting pairs that have similar orthography and phonology (dime–lime) or different orthography and phonology (press–list). Using fMRI, we examined effective connectivity among five left hemisphere regions of interest: fusiform gyrus (FG), inferior frontal gyrus (IFG), intraparietal sulcus (IPS), lateral temporal cortex (LTC), and medial frontal gyrus (MeFG). Age-related increases were observed in the influence of the IFG and FG on the LTC, but only in conflicting conditions. These results reflect a developmental increase in the convergence of bottom–up and top–down information on the LTC. In older children, top–down control process may selectively enhance the sensitivity of the LTC to bottom–up information from the FG. This may be evident especially in situations that require selective enhancement of task-relevant versus task-irrelevant information. Altogether these results provide a direct evidence for a developmental increase in top–down control processes in language processing. The developmental increase in bottom–up processing may be secondary to the enhancement of top–down processes.


Sign in / Sign up

Export Citation Format

Share Document