Silent Synapses in the Immature Visual Cortex: Layer-Specific Developmental Regulation

2004 ◽  
Vol 91 (2) ◽  
pp. 1097-1101 ◽  
Author(s):  
Simon Rumpel ◽  
Gunnar Kattenstroth ◽  
Kurt Gottmann

Central glutamatergic synapses are thought to initially form as immature, so-called silent synapses showing exclusively N-methyl-d-aspartate receptor-mediated synaptic transmission. Postsynaptic insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors during further development leads to a conversion into functional, mature synapses. Here, we tested the hypothesis that, according to the “inside first–outside last” pattern of neocortical layer formation and synaptogenesis, pyramidal cells in the superficial layers might show a higher fraction of silent synapses compared with pyramidal cells in the deep layers. We performed an electrophysiological analysis of glutamatergic synapses in acute rat visual cortex slices during postnatal development. In layer VI pyramidal neurons the incidence of silent synapses was high during the first postnatal week and strongly declined during further development. Surprisingly, in superficial cortical plate pyramidal neurons (immature layers II/III), the fraction of silent synapses was initially very low and increased up to the second postnatal week. Thereafter, a similar decline as found in layer VI pyramidal neurons was observed. Thus the developmental regulation of silent synapses was clearly different in pyramidal neurons from different neocortical layers. The almost complete absence of silent synapses at early stages in layer II/III pyramidal neurons indicates that an initially formed subset of synapses is constitutively functional. This might be important to enable spontaneous activity and latter activity-dependent maturation of synapses.

1993 ◽  
Vol 5 (5) ◽  
pp. 665-680 ◽  
Author(s):  
Andrew Nicoll ◽  
Colin Blakemore

Dual intracellular recording of nearby pairs of pyramidal cells in slices of rat visual cortex has shown that there are significant differences in functional connectivity between the superficial and deep layers (Mason et al. 1991; Nicoll and Blakemore 1993). For pairs of cells no farther than 300 μm apart, synaptic connections between layer 2/3 pyramidal neurons were individually weaker (median peak amplitude, A, of single-fiber excitatory postsynaptic potentials, EPSPs, = 0.4 mV) but more frequent (connection probability, p = 0.087) than those between layer 5 pyramidal neurons (mean A = 0.8 mV, p < 0.015). Taken in combination with plausible estimates of the density of pyramidal cells, the total numbers of synapses on them and the number of synapses formed on their intracortical axons, the present analysis of the above data suggests that roughly 70% of the excitatory synapses on any layer 2/3 pyramid, but fewer than 1% of those on a layer 5 pyramidal neuron, are derived from neighboring pyramidal neurons in its near vicinity. Even assuming very extreme values for some parameters, chosen to erode this difference, the calculated proportion of "local synapses" for layer 5 pyramids was always markedly lower than for layer 2/3 pyramidal neurons. These results imply that local excitatory connections are much more likely to provide significant "intracortical amplification" of afferent signals in layer 2/3 than in layer 5 of rat visual cortex.


2020 ◽  
Vol 30 (8) ◽  
pp. 4689-4707
Author(s):  
Chelsea S Sullivan ◽  
Vishwa Mohan ◽  
Paul B Manis ◽  
Sheryl S Moy ◽  
Young Truong ◽  
...  

Abstract Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.


2021 ◽  
Author(s):  
Wei Wen ◽  
Gina Turrigiano

Homeostatic plasticity maintains network stability by adjusting excitation, inhibition, or the intrinsic excitability of neurons, but the developmental regulation and coordination of these distinct forms of homeostatic plasticity remains poorly understood. A major contributor to this information gap is the lack of a uniform paradigm for chronically manipulating activity at different developmental stages. To overcome this limitation, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to directly suppress neuronal activity in layer (L) 2/3 of mouse primary visual cortex (V1) at two important developmental timepoints: the classic visual system critical period (CP, P24-29), and adulthood (P45-55). We show that 24 hours of DREADD-mediated activity suppression simultaneously induces excitatory synaptic scaling up and intrinsic homeostatic plasticity in L2/3 pyramidal neurons during the CP, consistent with previous observations using prolonged visual deprivation. Importantly, manipulations known to block these forms of homeostatic plasticity when induced pharmacologically or via visual deprivation also prevented DREADD-induced homeostatic plasticity. We next used the same paradigm to suppress activity in adult animals. Surprisingly, while excitatory synaptic scaling persisted into adulthood, intrinsic homeostatic plasticity was completely absent. Finally, we found that homeostatic changes in quantal inhibitory input onto L2/3 pyramidal neurons were absent during the CP but present in adults. Thus, the same population of neurons can express distinct sets of homeostatic plasticity mechanisms at different development stages. Our findings suggest that homeostatic forms of plasticity can be recruited in a modular manner according to the evolving needs of a developing neural circuit.


2017 ◽  
Author(s):  
Yevgenij Yanovsky ◽  
Jurij Brankačk

summaryThe relative electrical conductivity gradient with depth was estimated in the frontal cortex of anaesthetized rats. Current source density (CSD) approximations of field potentials evoked by ventromedial thalamic stimulations with an assumed homogeneous electrical conductivity of the neocortical tissue were compared to those with correction for the estimated conductivity gradient. In spite of the cellular heterogeneity the electrical conductivity of the frontal cortical tissue was found to be fairly homogeneous inside the superficial (layers I through IV) or deep layers (V- VI). The relative conductivity increased twofold at the transition between superficial and deep layers. Regardless of this changes CSD analysis of the field potentials evoked by ventromedial thalamic stimulation revealed negligible differences between estimations ignoring the conductivity and those taking the conductivity into account. No sinks or sources appeared or disappeared. Both CSD approximations revealed: 1) a strong sink in layer I representing most likely summed monosynaptic EPSPs of the ventromedial thalamic afferents; 2) a strong sink in layer VI, probably representing summed disynaptic EPSPs on dendrites of layer VI pyramidal cells, generated by axons of upper layer pyramidal cells; and 3) a sink in lower layer V representing probably threesynaptic summed EPSPs on dendrites of layer V pyramidal cells.


After injections of the enzyme horseradish peroxidase (HRP) into the superior colliculus of macaque monkeys, labelled cells in the neocortex were found to be restricted to layer V in all areas except striate visual cortex. In striate visual cortex, cortico-tectal cells were found both in layer V and in layer VI. The labelled cells in the two layers belonged to morphologically different populations: those of layer V were the common pyramidal cells and those of layer VI were identified as solitary cells of Meynert. This finding may provide new insights into the physiology of the cortico-collicular pathways. It also shows that the striate area in primates differs, with respect to cortico-tectal laminar specificity, from other neocortex.


2013 ◽  
Vol 109 (8) ◽  
pp. 2064-2076 ◽  
Author(s):  
Rie Funahashi ◽  
Takuro Maruyama ◽  
Yumiko Yoshimura ◽  
Yukio Komatsu

Immature excitatory synapses often have NMDA receptors but not AMPA receptors in central neurons, including visual cortical pyramidal neurons. These synapses, called silent synapses, are converted to functional synapses with AMPA receptors by NMDA receptor activation during early development. It is likely that this process underlies the activity-dependent refinement of neuronal circuits and brain functions. In the present study, we investigated postnatal development of excitatory synapses, focusing on the role of visual inputs in the conversion of silent to functional synapses in mouse visual cortex. We analyzed presumably unitary excitatory postsynaptic currents (EPSCs) between a pair of layer 2/3 pyramidal neurons, using minimal stimulation with a patch pipette attached to the soma of one of the pair. The proportion of silent synapses was estimated by the difference in the failure rate between AMPA- and NMDA-EPSCs. In normal development, silent synapses were present abundantly before eye opening, decreased considerably by the critical period of ocular dominance plasticity, and almost absent in adulthood. This decline in silent synapses was prevented by dark rearing. The amplitude of presumably unitary AMPA-EPSCs increased with age, but this increase was suppressed by dark rearing. The quantal amplitude of AMPA-EPSCs and paired-pulse ratio of NMDA-EPSCs both remained unchanged during development, independent of visual experience. These results indicate that visual inputs are required for the conversion of silent to functional synapses and this conversion largely contributes to developmental increases in the amplitude of presumably unitary AMPA-EPSCs.


2021 ◽  
Author(s):  
Alessandro R. Galloni ◽  
Zhiwen Ye ◽  
Ede Rancz

AbstractFeedforward and feedback pathways interact in specific dendritic domains to enable cognitive functions such as predictive inference and learning. Based on axonal projections, hierarchically lower areas are thought to form synapses primarily on dendrites in middle cortical layers, while higher-order areas are posited to target dendrites in layer 1 and in deep layers. However, the extent to which functional synapses form in regions of axo-dendritic overlap has not been extensively studied. Here, we use viral tracing in the visual cortex of mice to map brain-wide inputs to a genetically-defined population of layer 5 pyramidal neurons. Furthermore, we provide a comprehensive map of input locations through subcellular optogenetic circuit mapping. We show that input pathways target distinct dendritic domains with far greater specificity than appears from their axonal branching, often deviating substantially from the canonical patterns. Common assumptions regarding the dendrite-level interaction of feedforward and feedback inputs may thus need revisiting.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Bastiaan van der Veen ◽  
Sampath K. T. Kapanaiah ◽  
Kasyoka Kilonzo ◽  
Peter Steele-Perkins ◽  
Martin M. Jendryka ◽  
...  

AbstractPathological impulsivity is a debilitating symptom of multiple psychiatric diseases with few effective treatment options. To identify druggable receptors with anti-impulsive action we developed a systematic target discovery approach combining behavioural chemogenetics and gene expression analysis. Spatially restricted inhibition of three subdivisions of the prefrontal cortex of mice revealed that the anterior cingulate cortex (ACC) regulates premature responding, a form of motor impulsivity. Probing three G-protein cascades with designer receptors, we found that the activation of Gi-signalling in layer-5 pyramidal cells (L5-PCs) of the ACC strongly, reproducibly, and selectively decreased challenge-induced impulsivity. Differential gene expression analysis across murine ACC cell-types and 402 GPCRs revealed that - among Gi-coupled receptor-encoding genes - Grm2 is the most selectively expressed in L5-PCs while alternative targets were scarce. Validating our approach, we confirmed that mGluR2 activation reduced premature responding. These results suggest Gi-coupled receptors in ACC L5-PCs as therapeutic targets for impulse control disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuni Kay ◽  
Bruce E. Herring

AbstractWhile efficient methods are well established for studying postsynaptic protein regulation of glutamatergic synapses in the mammalian central nervous system, similarly efficient methods are lacking for studying proteins regulating presynaptic function. In the present study, we introduce an optical/electrophysiological method for investigating presynaptic molecular regulation. Here, using an optogenetic approach, we selectively stimulate genetically modified presynaptic CA3 pyramidal neurons in the hippocampus and measure optically-induced excitatory postsynaptic currents produced in unmodified postsynaptic CA1 pyramidal neurons. While such use of optogenetics is not novel, previous implementation methods do not allow basic quantification of the changes in synaptic strength produced by genetic manipulations. We find that incorporating simultaneous recordings of fiber volley amplitude provides a control for optical stimulation intensity and, as a result, creates a metric of synaptic efficacy that can be compared across experimental conditions. In the present study, we utilize our new method to demonstrate that inhibition of synaptotagmin 1 expression in CA3 pyramidal neurons leads to a significant reduction in Schaffer collateral synapse function, an effect that is masked with conventional electrical stimulation. Our hope is that this method will expedite our understanding of molecular regulatory pathways that govern presynaptic function.


2003 ◽  
Vol 89 (5) ◽  
pp. 2854-2867 ◽  
Author(s):  
Joshua C. Brumberg ◽  
Farid Hamzei-Sichani ◽  
Rafael Yuste

Layer VI is the origin of the massive feedback connection from the cortex to the thalamus, yet its complement of cell types and their connections is poorly understood. The physiological and morphological properties of corticofugal neurons of layer VI of mouse primary visual cortex were investigated in slices loaded with the Ca2+indicator fura-2AM. To identify corticofugal neurons, electrical stimulation of the white matter (WM) was done in conjunction with calcium imaging to detect neurons that responded with changes in intracellular Ca2+ concentrations in response to the stimulation. Subsequent whole cell recordings confirmed that they discharged antidromic action potentials after WM stimulation. Antidromically activated neurons were more excitable and had different spiking properties than neighboring nonantidromic neurons, although both groups had similar input resistances. Furthermore, antidromic neurons possessed narrower action potentials and smaller afterhyperpolarizations. Additionally, three-dimensional reconstructions indicated that antidromically activated neurons had a distinct morphology with longer apical dendrites and fewer nonprimary dendrites than nonantidromic cells. To identify the antidromic neurons, rhodamine microspheres were injected into the dorsal lateral geniculate nucleus of the thalamus and allowed to retrogradely transport back to the somata of the layer VI cortico-geniculate neurons. Physiological and anatomical analysis indicated that most antidromic neurons were likely to be cortico-geniculate neurons. Our results show that cortico-thalamic neurons represent a specific functional and morphological class of layer VI neurons.


Sign in / Sign up

Export Citation Format

Share Document