Estimating the effects of slicing on the electrophysiological properties of spinal motoneurons under normal and disease conditions

Author(s):  
Mohamed H Mousa ◽  
Sherif M. Elbasiouny

Although slice recordings from spinal motoneurons (MNs) are being widely used, the effects of slicing on the measured MN electrical properties under normal and disease conditions have not been assessed. Using high-fidelity cell models of neonatal WT and SOD cells, we examined the effects of slice thickness, soma position within the slice, and slice orientation to estimate the error induced in measured MN electrical properties from spinal slices. Our results show that most MN electrical properties are not adversely affected by slicing, except for cell time constant, cell capacitance, and Ca2+ PIC, which all exhibited large errors, regardless of the slice condition. Among the examined factors, soma position within the slice appears to be the strongest factor in influencing the magnitude of error in measured MN electrical properties. Transverse slices appear to have the least impact on measured MN electrical properties. Surprisingly, and despite their anatomical enlargement, we found that G85R-SOD MNs experience similar error in their measured electrical properties to those of WT MNs, but their errors are more sensitive to the soma position within the slice than WT MNs. Unless in thick and symmetrical slices, slicing appears to reduce motoneuron type differences. Accordingly, slice studies should attempt to record from MNs at the slice center to avoid large and inconsistent errors in measured cell properties and have valid cell measurements' comparisons. Our results, therefore, offer information that would enhance the rigor of MN electrophysiological data measured from the slice preparation under normal and disease conditions.

2013 ◽  
Vol 109 (11) ◽  
pp. 2705-2711 ◽  
Author(s):  
M. Bączyk ◽  
A. Hałuszka ◽  
W. Mrówczyński ◽  
J. Celichowski ◽  
P. Krutki

The study aimed at determining the influence of a whole body vibration (WBV) on electrophysiological properties of spinal motoneurons. The WBV training was performed on adult male Wistar rats, 5 days a week, for 5 wk, and each daily session consisted of four 30-s runs of vibration at 50 Hz. Motoneuron properties were investigated intracellularly during experiments on deeply anesthetized animals. The experimental group subjected to the WBV consisted of seven rats, and the control group of nine rats. The WBV treatment induced no significant changes in the passive membrane properties of motoneurons. However, the WBV-evoked adaptations in excitability and firing properties were observed, and they were limited to fast-type motoneurons. A significant decrease in rheobase current and a decrease in the minimum and the maximum currents required to evoke steady-state firing in motoneurons were revealed. These changes resulted in a leftward shift of the frequency-current relationship, combined with an increase in slope of this curve. The functional relevance of the described adaptive changes is the ability of fast motoneurons of rats subjected to the WBV to produce series of action potentials at higher frequencies in a response to the same intensity of activation. Previous studies proved that WBV induces changes in the contractile parameters predominantly of fast motor units (MUs). The data obtained in our experiment shed a new light to possible explanation of these results, suggesting that neuronal factors also play a substantial role in MU adaptation.


2017 ◽  
Vol 118 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Seoan Huh ◽  
Ramamurthy Siripuram ◽  
Robert H. Lee ◽  
Vladimir V. Turkin ◽  
Derek O’Neill ◽  
...  

The majority of studies on the electrical properties of neurons are carried out in rodents, and in particular in mice. However, the minute size of this animal compared with humans potentially limits the relevance of the resulting insights. To be able to extrapolate results obtained in a small animal such as a rodent, one needs to have proper knowledge of the rules governing how electrical properties of neurons scale with the size of the animal. Generally speaking, electrical resistances of neurons increase as cell size decreases, and thus maintenance of equal depolarization across cells of different sizes requires the underlying currents to decrease in proportion to the size decrease. Thus it would generally be expected that voltage-sensitive currents are smaller in smaller animals. In this study, we used in vivo preparations to record electrical properties of spinal motoneurons in deeply anesthetized adult mice and cats. We found that PICs do not scale with size, but instead are constant in their amplitudes across these species. This constancy, coupled with the threefold differences in electrical resistances, means that PICs contribute a threefold larger depolarization in the mouse than in the cat. As a consequence, motoneuronal firing rate sharply increases as animal size decreases. These differences in firing rates are likely essential in allowing different species to control muscles with widely different contraction speeds (smaller animals have faster muscle fibers). Thus from our results we have identified a possible new mechanism for how electrical properties are tuned to match mechanical properties within the motor output system. NEW & NOTEWORTHY The small size of the mouse warrants concern over whether the properties of their neurons are a scaled version of those in larger animals or instead have unique features. Comparison of spinal motoneurons in mice to cats showed unique features. Firing rates in the mouse were much higher, in large part due to relatively larger persistent inward currents. These differences likely reflect adaptations for controlling much faster muscle fibers in mouse than cat.


1999 ◽  
Vol 82 (5) ◽  
pp. 2747-2764 ◽  
Author(s):  
Phillip Jobling ◽  
Ian L. Gibbins

We have used multiple-labeling immunohistochemistry, intracellular dye-filling, and intracellular microelectrode recordings to characterize the morphological and electrical properties of sympathetic neurons in the superior cervical, thoracic, and celiac ganglia of mice. Neurochemical and morphological characteristics of neurons varied between ganglia. Thoracic sympathetic ganglia contained three main populations of neurons based on differential patterns of expression of immunoreactivity to tyrosine hydroxylase, neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP). In the celiac ganglion, nearly all neurons contained immunoreactivity to both tyrosine hydroxylase and NPY. Both the overall size of the dendritic tree and the number of primary dendrites were greater in neurons from the thoracic and celiac ganglia compared with those from the superior cervical ganglion. The electrophysiological properties of sympathetic neurons depended more on their ganglion of origin rather than their probable targets. All neurons in the superior cervical ganglion had phasic firing properties and large afterhyperpolarizations (AHPs). In addition, 34% of these neurons displayed an afterdepolarization preceding the AHP. Superior cervical ganglion neurons had prominent I M, I A, and I Hcurrents and a linear current-voltage relationship between −60 and −110 mV. Neurons from the thoracic ganglia had significantly smaller action potentials, AHPs, and apparent cell capacitance compared with superior cervical ganglion neurons, and only 18% showed an afterdepolarization. All neurons in superior cervical ganglia and most neurons in celiac ganglia received at least one strong preganglionic input. Nearly one-half the neurons in the celiac ganglion had tonic firing properties, and another 15% had firing properties intermediate between those of tonic and phasic neurons. Most celiac neurons showed significant inward rectification below −90 mV. They also expressed I A, but with slower inactivation kinetics than that of superior cervical or thoracic neurons. Both phasic and tonic celiac ganglion neurons received synaptic inputs via the celiac nerves in addition to strong inputs via the splanchnic nerves. Multivariate statistical analysis revealed that the properties of the action potential, the AHP, and the apparent cell capacitance together were sufficient to correctly classify 80% of neurons according to their ganglion of origin. These results indicate that there is considerable heterogeneity in the morphological, neurochemical, and electrical properties of sympathetic neurons in mice. Although the morphological and neurochemical characteristics of the neurons are likely to be related to their peripheral projections, the expression of particular electrophysiological traits seems to be more closely related to the ganglia within which the neurons occur.


2002 ◽  
Vol 88 (5) ◽  
pp. 2463-2476 ◽  
Author(s):  
Michelle M. Martin

Electrophysiological properties of lamprey spinal motoneurons were measured to determine whether their cellular properties change as the spinal cord goes from a quiescent state to the active state of fictive swimming. Intracellular microelectrode recordings of membrane potential were made from motoneurons in the isolated spinal cord preparation. Electrophysiological properties were first characterized in the quiescent spinal cord, and then fictive swimming was induced by perfusion with d-glutamate and the measurements were repeated. During the depolarizing excitatory phase of fictive swimming, the motoneurons had significantly reduced rheobase and significantly increased input resistance compared with the quiescent state, with no significant changes in these parameters during the repolarizing inhibitory phase of swimming. Spike threshold did not change significantly during fictive swimming compared with the quiescent state. During fictive swimming, the slope of the spike frequency versus injected current ( F-I) relationship decreased significantly as did spike-frequency adaptation and the amplitude of the slow after-spike hyperpolarization (sAHP). Serotonin is known to be released endogenously from the spinal cord during fictive swimming and is known to reduce the amplitude of the sAHP. Therefore the effects of serotonin on cellular properties were tested in the quiescent spinal cord. It was found that, in addition to reducing the sAHP amplitude, serotonin also reduced the slope of the F-I relationship and reduced spike-frequency adaptation, reproducing the changes observed in these parameters during fictive swimming. Application of spiperone, a serotonin antagonist, significantly increased the sAHP amplitude during fictive swimming but had no significant effect on F-I slope or adaptation. Because serotonin may act in part through reduction of calcium currents, the effect of calcium-free solution (cobalt substituted for calcium) was tested in the quiescent spinal cord. Similar to fictive swimming and serotonin application, the calcium-free solution significantly reduced the sAHP amplitude, the slope of the F-I relationship, and spike-frequency adaptation. These results suggest that there are significant changes in the firing properties of motoneurons during fictive swimming compared with the quiescent state, and it is possible that these changes may be attributed in part to the endogenous release of serotonin acting via reduction of calcium currents.


1995 ◽  
Vol 74 (5) ◽  
pp. 1972-1981 ◽  
Author(s):  
R. H. Liu ◽  
J. Yamuy ◽  
M. C. Xi ◽  
F. R. Morales ◽  
M. H. Chase

1. This study was undertaken to investigate the effects of adriamycin (ADM, Doxorubicin) on the basic electrophysiological properties of spinal cord motoneurons in the adult cat. ADM was injected into the biceps, gastrocnemius, semitendinosus, and semimembranosus muscles of the left hindlimb (1.2 mg per muscle). Intracellular recordings from motoneurons innervating these muscles were carried out 12, 20, or 40 days after ADM administration and from corresponding motoneurons in untreated control cats. 2. Twelve days after ADM injection, motoneurons innervating ADM-treated muscles (ADM MNs) exhibited statistically significant increases in input resistance, membrane time constant, and amplitude of the action potential's afterhyperpolarization (AHP). In addition, there was a statistically significant decrease in rheobase and in the delay between the action potential of the initial segment (IS) and that of the somadendritic (SD) portion of the motoneuron (IS-SD delay). There were no significant changes in the resting membrane potential, threshold depolarization, action potential amplitude, or axonal conduction velocity. 3. The changes in electrical properties of motoneurons at 20 and 40 days after ADM injection were qualitatively similar to those observed at 12 days. However, at 40 days after ADM injection there was a statistically significant decrease in the axonal conduction velocity of the ADM MNs. 4. The normal correlations that are present between the AHP duration and electrical properties of the control motoneurons were observed in the ADM MNs, e.g., AHP duration was positively correlated with the input resistance and time constant and negatively correlated with the axonal conduction velocity. The correlation coefficients, however, were reduced in comparison with the control data. 5. This study demonstrates that ADM exerts significant effects on the electrical properties of motoneurons when injected into their target muscles. The majority of the changes in motoneuron electrical properties caused by ADM resemble those observed in motoneurons of aged cats. Additional research is required to determine whether the specific changes induced in motoneurons by ADM and those that occur in motoneurons in old age are due to similar degradative mechanisms.


2004 ◽  
Vol 91 (1) ◽  
pp. 571-575 ◽  
Author(s):  
Jason J. Kuo ◽  
Martijn Schonewille ◽  
Teepu Siddique ◽  
Annet N. A. Schults ◽  
Ronggen Fu ◽  
...  

ALS (amyotrophic lateral sclerosis) is an adult-onset and deadly neurodegenerative disease characterized by a progressive and selective loss of motoneurons. Transgenic mice overexpressing a mutated human gene (G93A) coding for the enzyme SOD1 (Cu/Zn superoxide dismutase) develop a motoneuron disease resembling ALS in humans. In this generally accepted ALS model, we tested the electrophysiological properties of individual embryonic and neonatal spinal motoneurons in culture by measuring a wide range of electrical properties influencing motoneuron excitability during current clamp. There were no differences in the motoneuron resting potential, input conductance, action potential shape, or afterhyperpolarization between G93A and control motoneurons. The relationship between the motoneuron's firing frequency and injected current (f-I relation) was altered. The slope of the f-I relation and the maximal firing rate of the G93A motoneurons were much greater than in the control motoneurons. Differences in spontaneous synaptic input were excluded as a cause of increased excitability. This finding identifies a markedly elevated intrinsic electrical excitability in cultured embryonic and neonatal mutant G93A spinal motoneurons. We conclude that the observed intrinsic motoneuron hyperexcitability is induced by the SOD1 toxic gain-of-function through an aberration in the process of action potential generation. This hyperexcitability may play a crucial role in the pathogenesis of ALS as the motoneurons were cultured from presymptomatic mice.


2016 ◽  
Vol 115 (5) ◽  
pp. 2672-2680 ◽  
Author(s):  
M. A. Tadros ◽  
A. J. Fuglevand ◽  
A. M. Brichta ◽  
R. J. Callister

Motoneurons differ in the behaviors they control and their vulnerability to disease and aging. For example, brain stem motoneurons such as hypoglossal motoneurons (HMs) are involved in licking, suckling, swallowing, respiration, and vocalization. In contrast, spinal motoneurons (SMs) innervating the limbs are involved in postural and locomotor tasks requiring higher loads and lower movement velocities. Surprisingly, the properties of these two motoneuron pools have not been directly compared, even though studies on HMs predominate in the literature compared with SMs, especially for adult animals. Here we used whole cell patch-clamp recording to compare the electrophysiological properties of HMs and SMs in age-matched neonatal mice (P7–P10). Passive membrane properties were remarkably similar in HMs and SMs, and afterhyperpolarization properties did not differ markedly between the two populations. HMs had narrower action potentials (APs) and a faster upstroke on their APs compared with SMs. Furthermore, HMs discharged APs at higher frequencies in response to both step and ramp current injection than SMs. Therefore, while HMs and SMs have similar passive properties, they differ in their response to similar levels of depolarizing current. This suggests that each population possesses differing suites of ion channels that allow them to discharge at rates matched to the different mechanical properties of the muscle fibers that drive their distinct motor functions.


2010 ◽  
Vol 235 (4) ◽  
pp. 522-530 ◽  
Author(s):  
Mari Pekkanen-Mattila ◽  
Hugh Chapman ◽  
Erja Kerkelä ◽  
Riitta Suuronen ◽  
Heli Skottman ◽  
...  

Cardiomyocytes (CMs) derived from human embryonic stem cells (hESC) provide a promising tool for the pharmaceutical industry. In this study the electrical properties and maturation of hESC-CM derived using two differentiation methods were compared and the suitability of hESC-CMs as a cell model for the assessment of drug-induced repolarization delay was evaluated. CMs were differentiated either in END-2 co-culture or by spontaneous differentiation. Action potentials (APs) were recorded from cells in spontaneously beating areas using the whole-cell patch-clamp technique. The hESC-CMs exhibited predominantly a ventricular-like phenotype with heterogeneous properties. Heterogeneity was indicative of the spectrum of hESC-CM maturation from embryonic-like with AP upstroke velocities <30 V/s and maximum diastolic potential (MDP) of close to −60 mV to more mature with values >150 V/s and −80 mV, respectively. The mean MDP was −70 mV and a significant difference was observed between the two differentiation methods (−66 versus −75 mV, P < 0.001). The age of the CMs did not correlate with phenotype maturation. The addition of the hERG blocker E-4031 and the sodium channel modulator veratridine significantly prolonged the AP duration. Furthermore, proarrhythmic indices were induced. In conclusion, the main observation was the heterogeneity in electrical properties of the hESC-CMs and this was observed with both differentiation methods. One-third of the hESC-CMs exhibited fairly mature electrophysiological properties, suggesting that mature CMs could be obtained from hESCs. However, improved differentiation methods are needed to produce homogeneous mature human CMs for pharmaceutical and toxicological applications.


Endocrinology ◽  
2012 ◽  
Vol 153 (8) ◽  
pp. 3758-3769 ◽  
Author(s):  
Stephanie Constantin ◽  
Richard Piet ◽  
Karl Iremonger ◽  
Shel Hwa Yeo ◽  
Jenny Clarkson ◽  
...  

The GnRH neurons exhibit long dendrites and project to the median eminence. The aim of the present study was to generate an acute brain slice preparation that enabled recordings to be undertaken from GnRH neurons maintaining the full extent of their dendrites or axons. A thick, horizontal brain slice was developed, in which it was possible to record from the horizontally oriented GnRH neurons located in the anterior hypothalamic area (AHA). In vivo studies showed that the majority of AHA GnRH neurons projected outside the blood-brain barrier and expressed c-Fos at the time of the GnRH surge. On-cell recordings compared AHA GnRH neurons in the horizontal slice (AHAh) with AHA and preoptic area (POA) GnRH neurons in coronal slices [POA coronal (POAc) and AHA coronal (AHAc), respectively]. AHAh GnRH neurons exhibited tighter burst firing compared with other slice orientations. Although α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) excited GnRH neurons in all preparations, γ-aminobutyric acid (GABA) was excitatory in AHAc and POAc but inhibitory in AHAh slices. GABAA receptor postsynaptic currents were the same in AHAh and AHAc slices. Intriguingly, direct activation of GABAA or GABAB receptors respectively stimulated and inhibited GnRH neurons regardless of slice orientation. Subsequent experiments indicated that net GABA effects were determined by differences in the ratio of GABAA and GABAB receptor-mediated effects in “long” and “short” dendrites of GnRH neurons in the different slice orientations. These studies document a new brain slice preparation for recording from GnRH neurons with their extensive dendrites/axons and highlight the importance of GnRH neuron orientation relative to the angle of brain slicing in studying these neurons in vitro.


Sign in / Sign up

Export Citation Format

Share Document