scholarly journals Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex

2011 ◽  
Vol 106 (4) ◽  
pp. 1734-1746 ◽  
Author(s):  
Javier O. Garcia ◽  
Emily D. Grossman ◽  
Ramesh Srinivasan

Single pulses of transcranial magnetic stimulation (TMS) result in distal and long-lasting oscillations, a finding directly challenging the virtual lesion hypothesis. Previous research supporting this finding has primarily come from stimulation of the motor cortex. We have used single-pulse TMS with simultaneous EEG to target seven brain regions, six of which belong to the visual system [left and right primary visual area V1, motion-sensitive human middle temporal cortex, and a ventral temporal region], as determined with functional MRI-guided neuronavigation, and a vertex “control” site to measure the network effects of the TMS pulse. We found the TMS-evoked potential (TMS-EP) over visual cortex consists mostly of site-dependent theta- and alphaband oscillations. These site-dependent oscillations extended beyond the stimulation site to functionally connected cortical regions and correspond to time windows where the EEG responses maximally diverge (40, 200, and 385 ms). Correlations revealed two site-independent oscillations ∼350 ms after the TMS pulse: a theta-band oscillation carried by the frontal cortex, and an alpha-band oscillation over parietal and frontal cortical regions. A manipulation of stimulation intensity at one stimulation site (right hemisphere V1-V3) revealed sensitivity to the stimulation intensity at different regions of cortex, evidence of intensity tuning in regions distal to the site of stimulation. Together these results suggest that a TMS pulse applied to the visual cortex has a complex effect on brain function, engaging multiple brain networks functionally connected to the visual system with both invariant and site-specific spatiotemporal dynamics. With this characterization of TMS, we propose an alternative to the virtual lesion hypothesis. Rather than a technique that simulates lesions, we propose TMS generates natural brain signals and engages functional networks.

2017 ◽  
Vol 29 (6) ◽  
pp. 953-967 ◽  
Author(s):  
Nathan M. Petro ◽  
L. Forest Gruss ◽  
Siyang Yin ◽  
Haiqing Huang ◽  
Vladimir Miskovic ◽  
...  

Emotionally salient cues are detected more readily, remembered better, and evoke greater visual cortical responses compared with neutral stimuli. The current study used concurrent EEG-fMRI recordings to identify large-scale network interactions involved in the amplification of visual cortical activity when viewing aversively conditioned cues. To generate a continuous neural signal from pericalcarine visual cortex, we presented rhythmic (10/sec) phase-reversing gratings, the orientation of which predicted the presence (CS+) or absence (CS−) of a cutaneous electric shock (i.e., the unconditioned stimulus). The resulting single trial steady-state visual evoked potential (ssVEP) amplitude was regressed against the whole-brain BOLD signal, resulting in a measure of ssVEP-BOLD coupling. Across all trial types, ssVEP-BOLD coupling was observed in both primary and extended visual cortical regions, the rolandic operculum, as well as the thalamus and bilateral hippocampus. For CS+ relative to CS− trials during the conditioning phase, BOLD-alone analyses showed CS+ enhancement at the occipital pole, superior temporal sulci, and the anterior insula bilaterally, whereas ssVEP-BOLD coupling was greater in the pericalcarine cortex, inferior parietal cortex, and middle frontal gyrus. Dynamic causal modeling analyses supported connectivity models in which heightened activity in pericalcarine cortex for threat (CS+) arises from cortico-cortical top–down modulation, specifically from the middle frontal gyrus. No evidence was observed for selective pericalcarine modulation by deep cortical structures such as the amygdala or anterior insula, suggesting that the heightened engagement of pericalcarine cortex for threat stimuli is mediated by cortical structures that constitute key nodes of canonical attention networks.


Author(s):  
Edward H. Silson ◽  
Iris I. A. Groen ◽  
Chris I. Baker

AbstractHuman visual cortex is organised broadly according to two major principles: retinotopy (the spatial mapping of the retina in cortex) and category-selectivity (preferential responses to specific categories of stimuli). Historically, these principles were considered anatomically separate, with retinotopy restricted to the occipital cortex and category-selectivity emerging in the lateral-occipital and ventral-temporal cortex. However, recent studies show that category-selective regions exhibit systematic retinotopic biases, for example exhibiting stronger activation for stimuli presented in the contra- compared to the ipsilateral visual field. It is unclear, however, whether responses within category-selective regions are more strongly driven by retinotopic location or by category preference, and if there are systematic differences between category-selective regions in the relative strengths of these preferences. Here, we directly compare contralateral and category preferences by measuring fMRI responses to scene and face stimuli presented in the left or right visual field and computing two bias indices: a contralateral bias (response to the contralateral minus ipsilateral visual field) and a face/scene bias (preferred response to scenes compared to faces, or vice versa). We compare these biases within and between scene- and face-selective regions and across the lateral and ventral surfaces of the visual cortex more broadly. We find an interaction between surface and bias: lateral surface regions show a stronger contralateral than face/scene bias, whilst ventral surface regions show the opposite. These effects are robust across and within subjects, and appear to reflect large-scale, smoothly varying gradients. Together, these findings support distinct functional roles for the lateral and ventral visual cortex in terms of the relative importance of the spatial location of stimuli during visual information processing.


2021 ◽  
Author(s):  
Edward H Silson ◽  
Iris Isabelle Anna Groen ◽  
Chris I Baker

Human visual cortex is organised broadly according to two major principles: retinotopy (the spatial mapping of the retina in cortex) and category-selectivity (preferential responses to specific categories of stimuli). Historically, these principles were considered anatomically separate, with retinotopy restricted to the occipital cortex and category-selectivity emerging in lateral-occipital and ventral-temporal cortex. Contrary to this assumption, recent studies show that category-selective regions exhibit systematic retinotopic biases. It is unclear, however, whether responses within these regions are more strongly driven by retinotopic location or by category preference, and if there are systematic differences between category-selective regions in the relative strengths of these preferences. Here, we directly compare spatial and category preferences by measuring fMRI responses to scene and face stimuli presented in the left or right visual field and computing two bias indices: a spatial bias (response to the contralateral minus ipsilateral visual field) and a category bias (response to the preferred minus non-preferred category). We compare these biases within and between scene- and face-selective regions across the lateral and ventral surfaces of visual cortex. We find an interaction between surface and bias: lateral regions show a stronger spatial than category bias, whilst ventral regions show the opposite. These effects are robust across and within subjects, and reflect large-scale, smoothly varying gradients across both surfaces. Together, these findings support distinct functional roles for lateral and ventral category-selective regions in visual information processing in terms of the relative importance of spatial information.


2015 ◽  
Vol 32 ◽  
Author(s):  
M.J. ARCARO ◽  
S. KASTNER

AbstractAreas V3 and V4 are commonly thought of as individual entities in the primate visual system, based on definition criteria such as their representation of visual space, connectivity, functional response properties, and relative anatomical location in cortex. Yet, large-scale functional and anatomical organization patterns not only emphasize distinctions within each area, but also links across visual cortex. Specifically, the visuotopic organization of V3 and V4 appears to be part of a larger, supra-areal organization, clustering these areas with early visual areas V1 and V2. In addition, connectivity patterns across visual cortex appear to vary within these areas as a function of their supra-areal eccentricity organization. This complicates the traditional view of these regions as individual functional “areas.” Here, we will review the criteria for defining areas V3 and V4 and will discuss functional and anatomical studies in humans and monkeys that emphasize the integration of individual visual areas into broad, supra-areal clusters that work in concert for a common computational goal. Specifically, we propose that the visuotopic organization of V3 and V4, which provides the criteria for differentiating these areas, also unifies these areas into the supra-areal organization of early visual cortex. We propose that V3 and V4 play a critical role in this supra-areal organization by filtering information about the visual environment along parallel pathways across higher-order cortex.


Author(s):  
Mareike Grotheer ◽  
Emily Kubota ◽  
Kalanit Grill-Spector

AbstractFor over a century, researchers have examined the functional relevancy of white matter bundles. Consequently, many large-scale bundles spanning several centimeters have been associated in their entirety with specific brain functions, such as language or attention. However, these coarse structural–functional relationships are at odds with modern understanding of the fine-grained functional organization of human cortex, such as the mosaic of category-selective regions in ventral temporal cortex. Here, we review a multimodal approach that combines fMRI to define functional regions of interest within individual’s brains with dMRI tractography to identify the white matter bundles of the same individual. Combining these data allows to determine which subsets of streamlines within a white matter bundle connect to specific functional regions in each individual. That is, this approach identifies the functionally defined white matter sub-bundles of the brain. We argue that this approach not only enhances the accuracy of interpreting the functional relevancy of white matter bundles, but also enables segmentation of these large-scale bundles into meaningful functional units, which can then be linked to behavior with enhanced precision. Importantly, this approach has the potential for making new discoveries of the fine-grained functional relevancy of white matter connections in the visual system and the brain more broadly, akin to the flurry of research that has identified functional regions in cortex.


2019 ◽  
Author(s):  
Sonia Poltoratski ◽  
Frank Tong

AbstractThe detection and segmentation of meaningful figures from their background is a core function of vision. While work in non-human primates has implicated early visual mechanisms in this figure-ground modulation, neuroimaging in humans has instead largely ascribed the processing of figures and objects to higher stages of the visual hierarchy. Here, we used high-field fMRI at 7Tesla to measure BOLD responses to task-irrelevant orientation-defined figures in human early visual cortex, and employed a novel population receptive field (pRF) mapping-based approach to resolve the spatial profiles of two constituent mechanisms of figure-ground modulation: a local boundary response, and a further enhancement spanning the full extent of the figure region that is driven by global differences in features. Reconstructing the distinct spatial profiles of these effects reveals that figure enhancement modulates responses in human early visual cortex in a manner consistent with a mechanism of automatic, contextually-driven feedback from higher visual areas.Significance StatementA core function of the visual system is to parse complex 2D input into meaningful figures. We do so constantly and seamlessly, both by processing information about visible edges and by analyzing large-scale differences between figures and background. While influential neurophysiology work has characterized an intriguing mechanism that enhances V1 responses to perceptual figures, we have a poor understanding of how the early visual system contributes to figure-ground processing in humans. Here, we use advanced computational analysis methods and high-field human fMRI data to resolve the distinct spatial profiles of local edge and global figure enhancement in the early visual system (V1 and LGN); the latter is distinct and consistent a mechanism of automatic, stimulus-driven feedback from higher-level visual areas.


Children ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 137
Author(s):  
Kalliopi Kappou ◽  
Myrto Ntougia ◽  
Aikaterini Kourtesi ◽  
Eleni Panagouli ◽  
Elpis Vlachopapadopoulou ◽  
...  

Background: Anorexia nervosa (AN) is a serious, multifactorial mental disorder affecting predominantly young females. This systematic review examines neuroimaging findings in adolescents and young adults up to 24 years old, in order to explore alterations associated with disease pathophysiology. Methods: Eligible studies on structural and functional brain neuroimaging were sought systematically in PubMed, CENTRAL and EMBASE databases up to 5 October 2020. Results: Thirty-three studies were included, investigating a total of 587 patients with a current diagnosis of AN and 663 healthy controls (HC). Global and regional grey matter (GM) volume reduction as well as white matter (WM) microstructure alterations were detected. The mainly affected regions were the prefrontal, parietal and temporal cortex, hippocampus, amygdala, insula, thalamus and cerebellum as well as various WM tracts such as corona radiata and superior longitudinal fasciculus (SLF). Regarding functional imaging, alterations were pointed out in large-scale brain networks, such as default mode network (DMN), executive control network (ECN) and salience network (SN). Most findings appear to reverse after weight restoration. Specific limitations of neuroimaging studies in still developing individuals are also discussed. Conclusions: Structural and functional alterations are present in the early course of the disease, most of them being partially or totally reversible. Nonetheless, neuroimaging findings have been open to many biological interpretations. Thus, more studies are needed to clarify their clinical significance.


2020 ◽  
Vol 65 (6) ◽  
pp. 705-720
Author(s):  
Aarti Sharma ◽  
Jaynendra Kumar Rai ◽  
Ravi Prakash Tewari

AbstractEpilepsy is characterized by uncontrollable seizure during which consciousness of patient is disturbed. Prediction of the seizure in advance will increase the remedial possibilities for the patients suffering from epilepsy. An automated system for seizure prediction is important for seizure enactment, prevention of sudden unexpected deaths and to avoid seizure related injuries. This paper proposes the prediction of an upcoming seizure by analyzing the 23 channel non-stationary EEG signal. EEG signal is divided into smaller segments to change it into quasi-stationary data using an overlapping moving window. Brain region is marked into four regions namely left hemisphere, right hemisphere, central region and temporal region to identify the epileptogenic region. The epileptogenic region shows significant variations during pre-ictal state in comparison to the other regions. So, seizure prediction is carried out by analyzing EEG signals from this region. Seizure prediction is proposed using features extracted from both time and frequency domain. Relative entropy and relative energy are extracted from wavelet transform and Pearson correlation coefficient is obtained from time domain EEG signal. Extracted features have been smoothened using moving average filter. First order derivative of relative features have been used to normalize the intervariability before deciding the threshold for marking the prediction of seizure. Isolated seizures where pre-ictal duration of more than 1 h is reported has been detected with an accuracy of 92.18% with precursory warning 18 min in advance and seizure confirmation 12 min in advance. An overall accuracy of 83.33% with false positive alarm rate of 0.01/h has been obtained for all seizure cases with average prediction time of 9.9 min.


2021 ◽  
Vol 11 (8) ◽  
pp. 960
Author(s):  
Mina Kheirkhah ◽  
Philipp Baumbach ◽  
Lutz Leistritz ◽  
Otto W. Witte ◽  
Martin Walter ◽  
...  

Studies investigating human brain response to emotional stimuli—particularly high-arousing versus neutral stimuli—have obtained inconsistent results. The present study was the first to combine magnetoencephalography (MEG) with the bootstrapping method to examine the whole brain and identify the cortical regions involved in this differential response. Seventeen healthy participants (11 females, aged 19 to 33 years; mean age, 26.9 years) were presented with high-arousing emotional (pleasant and unpleasant) and neutral pictures, and their brain responses were measured using MEG. When random resampling bootstrapping was performed for each participant, the greatest differences between high-arousing emotional and neutral stimuli during M300 (270–320 ms) were found to occur in the right temporo-parietal region. This finding was observed in response to both pleasant and unpleasant stimuli. The results, which may be more robust than previous studies because of bootstrapping and examination of the whole brain, reinforce the essential role of the right hemisphere in emotion processing.


2000 ◽  
Vol 12 (4) ◽  
pp. 622-634 ◽  
Author(s):  
Matti Laine ◽  
Riitta Salmelin ◽  
Päivi Helenius ◽  
Reijo Marttila

Magnetoencephalographic (MEG) changes in cortical activity were studied in a chronic Finnish-speaking deep dyslexic patient during single-word and sentence reading. It has been hypothesized that in deep dyslexia, written word recognition and its lexical-semantic analysis are subserved by the intact right hemisphere. However, in our patient, as well as in most nonimpaired readers, lexical-semantic processing as measured by sentence-final semantic-incongruency detection was related to the left superior-temporal cortex activation. Activations around this same cortical area could be identified in single-word reading as well. Another factor relevant to deep dyslexic reading, the morphological complexity of the presented words, was also studied. The effect of morphology was observed only during the preparation for oral output. By performing repeated recordings 1 year apart, we were able to document significant variability in both the spontaneous activity and the evoked responses in the lesioned left hemisphere even though at the behavioural level, the patient's performance was stable. The observed variability emphasizes the importance of estimating consistency of brain activity both within and between measurements in brain-damaged individuals.


Sign in / Sign up

Export Citation Format

Share Document