Plasticity in the Visual System Is Correlated With a Change in Lifestyle of Solitarious and Gregarious Locusts

2004 ◽  
Vol 91 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Thomas Matheson ◽  
Stephen M. Rogers ◽  
Holger G. Krapp

We demonstrate pronounced differences in the visual system of a polyphenic locust species that can change reversibly between two forms (phases), which vary in morphology and behavior. At low population densities, individuals of Schistocerca gregaria develop into the solitarious phase, are cryptic, and tend to avoid other locusts. At high densities, individuals develop instead into the swarm-forming gregarious phase. We analyzed in both phases the responses of an identified visual interneuron, the descending contralateral movement detector (DCMD), which responds to approaching objects. We demonstrate that habituation of DCMD is fivefold stronger in solitarious locusts. In both phases, the mean time of peak firing relative to the time to collision nevertheless occurs with a similar characteristic delay after an approaching object reaches a particular angular extent on the retina. Variation in the time of peak firing is greater in solitarious locusts, which have lower firing rates. Threshold angle and delay are therefore conserved despite changes in habituation or behavioral phase state. The different rates of habituation should contribute to different predator escape strategies or flight control for locusts living either in a swarm or as isolated individuals. For example, increased variability in the habituated responses of solitarious locusts should render their escape behaviors less predictable. Relative resistance to habituation in gregarious locusts should permit the continued responsiveness required to avoid colliding with other locusts in a swarm. These results will permit us to analyze neuronal plasticity in a model system with a well-defined and controllable behavioral context.

2010 ◽  
Vol 103 (2) ◽  
pp. 779-792 ◽  
Author(s):  
Stephen M. Rogers ◽  
George W. J. Harston ◽  
Fleur Kilburn-Toppin ◽  
Thomas Matheson ◽  
Malcolm Burrows ◽  
...  

Desert locusts ( Schistocerca gregaria ) can transform reversibly between the swarming gregarious phase and a solitarious phase, which avoids other locusts. This transformation entails dramatic changes in morphology, physiology, and behavior. We have used the lobula giant movement detector (LGMD) and its postsynaptic target, the descending contralateral movement detector (DCMD), which are visual interneurons that detect looming objects, to analyze how differences in the visual ecology of the two phases are served by altered neuronal function. Solitarious locusts had larger eyes and a greater degree of binocular overlap than those of gregarious locusts. The receptive field to looming stimuli had a large central region of nearly equal response spanning 120° × 60° in both phases. The DCMDs of gregarious locusts responded more strongly than solitarious locusts and had a small caudolateral focus of even further sensitivity. More peripherally, the response was reduced in both phases, particularly ventrally, with gregarious locusts showing greater proportional decrease. Gregarious locusts showed less habituation to repeated looming stimuli along the eye equator than did solitarious locusts. By contrast, in other parts of the receptive field the degree of habituation was similar in both phases. The receptive field organization to looming stimuli contrasts strongly with the receptive field organization of the same neurons to nonlooming local-motion stimuli, which show much more pronounced regional variation. The DCMDs of both gregarious and solitarious locusts are able to detect approaching objects from across a wide expanse of visual space, but phase-specific changes in the spatiotemporal receptive field are linked to lifestyle changes.


1983 ◽  
Vol 103 (1) ◽  
pp. 47-54
Author(s):  
JOHN D. STEEVES ◽  
KEIR G. PEARSON

Several studies have shown that there can be considerable variability in the morphology of identified neurones. In a recent investigation (Pearson & Goodman, 1979) a great degree of variability was observed in the axon branching patterns of the descending contralateral movement detector (DCMD) interneurones of locusts. Corresponding to the variation in the structure of DCMD was a large variation in the synaptic connections made by this interneurone; the absence of a monosynaptic connection always correlated with the lack of the appropriate axonal branch of DCMD. Since this variability could be related to genotypic differences, we investigated the structure and synaptic connections of DCMD in individuals from several different isogenic clones of the locust Schistocerca gregaria. Within a single group of clones the variability in the axonal branching patterns and synaptic connections of DCMD was generally less than that between different clones or in sexually reproduced control animals. More significantly, a few of the clonal groups had consistently unique branching patterns and concomitant synaptic connections. Nevertheless, there was still some variability in the structure of DCMD within each clone. We conclude from these observations that differences in genotype can influence the morphology of individual neurones at the relatively refined level of axonal branching patterns and consequently the neurone's synaptic connections. However, due to the variability of DCMD structure within a single clone, epigenetic factors must also determine the pattern of axonal branching.


1980 ◽  
Vol 86 (1) ◽  
pp. 87-97
Author(s):  
PETER SIMMONS

Both of the descending contralateral movement detector (DCMD) neurones of Schistocerca americana gregaria, which respond to stimulation of the contralateral eye or to loud noises, mediate excitatory postsynaptic potentials in most ipsilateral flight motoneurones.


Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1112-1119 ◽  
Author(s):  
Gerit Arne Linneweber ◽  
Maheva Andriatsilavo ◽  
Suchetana Bias Dutta ◽  
Mercedes Bengochea ◽  
Liz Hellbruegge ◽  
...  

The genome versus experience dichotomy has dominated understanding of behavioral individuality. By contrast, the role of nonheritable noise during brain development in behavioral variation is understudied. Using Drosophila melanogaster, we demonstrate a link between stochastic variation in brain wiring and behavioral individuality. A visual system circuit called the dorsal cluster neurons (DCN) shows nonheritable, interindividual variation in right/left wiring asymmetry and controls object orientation in freely walking flies. We show that DCN wiring asymmetry instructs an individual’s object responses: The greater the asymmetry, the better the individual orients toward a visual object. Silencing DCNs abolishes correlations between anatomy and behavior, whereas inducing DCN asymmetry suffices to improve object responses.


2006 ◽  
Vol 95 (6) ◽  
pp. 3391-3400 ◽  
Author(s):  
Roger D. Santer ◽  
F. Claire Rind ◽  
Richard Stafford ◽  
Peter J. Simmons

Flying locusts perform a characteristic gliding dive in response to predator-sized stimuli looming from one side. These visual looming stimuli trigger trains of spikes in the descending contralateral movement detector (DCMD) neuron that increase in frequency as the stimulus gets nearer. Here we provide evidence that high-frequency (>150 Hz) DCMD spikes are involved in triggering the glide: the DCMD is the only excitatory input to a key gliding motor neuron during a loom; DCMD-mediated EPSPs only summate significantly in this motor neuron when they occur at >150 Hz; when a looming stimulus ceases approach prematurely, high-frequency DCMD spikes are removed from its response and the occurrence of gliding is reduced; and an axon important for glide triggering descends in the nerve cord contralateral to the eye detecting a looming stimulus, as the DCMD does. DCMD recordings from tethered flying locusts showed that glides follow high-frequency spikes in a DCMD, but analyses could not identify a feature of the DCMD response alone that was reliably associated with glides in all trials. This was because, for a glide to be triggered, the high-frequency spikes must be timed appropriately within the wingbeat cycle to coincide with wing elevation. We interpret this as flight-gating of the DCMD response resulting from rhythmic modulation of the flight motor neuron's membrane potential during flight. This means that the locust's escape behavior can vary in response to the same looming stimulus, meaning that a predator cannot exploit predictability in the locust's collision avoidance behavior.


2012 ◽  
Vol 108 (4) ◽  
pp. 1052-1068 ◽  
Author(s):  
Glyn A. McMillan ◽  
John R. Gray

Two identified locust neurons, the lobula giant movement detector (LGMD) and its postsynaptic partner, the descending contralateral movement detector (DCMD), constitute one motion-sensitive pathway in the visual system that responds preferentially to objects that approach on a direct collision course and are implicated in collision-avoidance behavior. Previously described responses to the approach of paired objects and approaches at different time intervals (Guest BB, Gray JR. J Neurophysiol 95: 1428–1441, 2006) suggest that this pathway may also be affected by more complicated movements in the locust's visual environment. To test this possibility we presented stationary locusts with disks traveling along combinations of colliding (looming), noncolliding (translatory), and near-miss trajectories. Distinctly different responses to different trajectories and trajectory changes demonstrate that DCMD responds to complex aspects of local visual motion. DCMD peak firing rates associated with the time of collision remained relatively invariant after a trajectory change from translation to looming. Translatory motion initiated in the frontal visual field generated a larger peak firing rate relative to object motion initiated in the posterior visual field, and the peak varied with simulated distance from the eye. Transition from translation to looming produced a transient decrease in the firing rate, whereas transition away from looming produced a transient increase. The change in firing rate at the time of transition was strongly correlated with unique expansion parameters described by the instantaneous angular acceleration of the leading edge and subtense angle of the disk. However, response time remained invariant. While these results may reflect low spatial resolution of the compound eye, they also suggest that this motion-sensitive pathway may be capable of monitoring dynamic expansion properties of objects that change the trajectory of motion.


Development ◽  
1984 ◽  
Vol 83 (1) ◽  
pp. 189-211
Author(s):  
D. J. Emery ◽  
K. A. Bell ◽  
W. Chapco ◽  
J. D. Steeves

A reduced-eye (re) mutant grasshopper of Melanoplus sanguinipes has been characterized by small flat compound eyes lacking facets, no lateral ocelli and only a remnant of the median ocellus. The re grasshoppers walk, jump, fly and feed in a normal manner, but do not respond to visual and auditory stimuli, suggesting they may be blind and deaf. Extracellular recordings from the ventral nerve cord of re mutants verified the lack of neural activity in response to visual and auditory inputs, yet the mutants detected mechanical and tactile stimuli. Electroretinograms implied that a visual deficit may be within the photoreceptors of the compound eye. Histological examination of the compound eyes and ocelli indicated that the cells of the mutant compound eye incompletely differentiate. The optic lamina underlying the retina is missing, as is the outer optic chiasma. The medulla and lobula of the mutant optic lobe are present, however, the neuropil of the medulla lacks the characteristic axonal projection patterns of wild-type grasshoppers. The re grasshopper also lacks all ocellar nerves. Ocellar nerves are normally formed from processes of second order ocellar neurons (SONs), suggesting that if the mutant SONs are present within the protocerebrum, their morphology is drastically altered. Comparison of embryos and juvenile nymphs supports the suggestion that the alterations in the re visual system are the result of abnormal differentiation during development. Even though there is clear evidence of morphological alterations in second and third order optic lobe interneurons, one higher order visual interneuron of the midbrain, the descending contralateral movement detector (DCMD), has the same morphology as the DCMD in a wildtype brain. In this instance, the complete deprivation of the primary sensory input does not appear to alter cellular development.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008965
Author(s):  
Siwei Wang ◽  
Idan Segev ◽  
Alexander Borst ◽  
Stephanie Palmer

The visual system must make predictions to compensate for inherent delays in its processing. Yet little is known, mechanistically, about how prediction aids natural behaviors. Here, we show that despite a 20-30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly achieves maximally efficient prediction. This prediction enables the fly to fine-tune its complex, yet brief, evasive flight maneuvers according to its initial ego-rotation at the time of detection of the visual threat. Combining a rich database of behavioral recordings with detailed compartmental modeling of the VS network, we further show that the VS network has axonal gap junctions that are critical for optimal prediction. During evasive maneuvers, a VS subpopulation that directly innervates the neck motor center can convey predictive information about the fly’s future ego-rotation, potentially crucial for ongoing flight control. These results suggest a novel sensory-motor pathway that links sensory prediction to behavior.


2019 ◽  
Author(s):  
Samson Chota ◽  
Rufin VanRullen

AbstractIt has long been debated whether visual processing is, at least partially, a discrete process. Although vision appears to be a continuous stream of sensory information, sophisticated experiments reveal periodic modulations of perception and behavior. Previous work has demonstrated that the phase of endogenous neural oscillations in the 10 Hz range predicts the “lag” of the flash lag effect, a temporal visual illusion in which a static object is perceived to be lagging in time behind a moving object. Consequently, it has been proposed that the flash lag illusion could be a manifestation of a periodic, discrete sampling mechanism in the visual system. In this experiment we set out to causally test this hypothesis by entraining the visual system to a periodic 10 Hz stimulus and probing the flash lag effect (FLE) at different time points during entrainment. We hypothesized that the perceived FLE would be modulated over time, at the same frequency as the entrainer (10 Hz). A frequency analysis of the average FLE time-course indeed reveals a significant peak at 10 Hz as well as a strong phase consistency between subjects (N=26). Our findings provide evidence for a causal relationship between alpha oscillations and fluctuations in temporal perception.


Sign in / Sign up

Export Citation Format

Share Document