A voltage-clamp analysis of currents underlying cyclic AMP-induced membrane modulation in isolated peptidergic neurons of Aplysia

1984 ◽  
Vol 52 (2) ◽  
pp. 340-349 ◽  
Author(s):  
L. K. Kaczmarek ◽  
F. Strumwasser

A variety of chemical and electrophysiological evidence indicates that the onset of afterdischarge and the subsequent profound enhancement of spike broadening that occur in the bag cell neurons of Aplysia are related to an increase in adenosine 3',5'-monophosphate-(cAMP) dependent protein phosphorylation. We have now used a two-electrode voltage clamp to study the properties of isolated bag cell neurons in cell culture and their response to 8 benzylthio-cAMP (8BTcAMP) and N6-n-butyl 8BTcAMP. These membrane-permeant and phosphodiesterase-resistant cAMP analogs induce spontaneous discharge and spike broadening in both the intact bag cell cluster and isolated bag cell neurons in cell culture. The dominant inward current in these cultured cells was found to be the calcium current, Ica, which was abolished by Co2+ (20 mM) or Ni2+ (10 mM) and could be observed in Na+-free media. In a minority of cells (2 of 12), in normal ionic media, a transient inward current was observed that was unaffected by Co2+ and Ni2+ and probably represents a sodium current. The three characterized potassium currents, the delayed rectifying current IK, the calcium-dependent current IC, and the early transient current IA, distinguished by their differing pharmacological and voltage-activation properties, were present in all healthy cells. Three effects of the cyclic AMP analogs (0.5 mM) on the electrical properties of these cells were 1) the emergence of a region of negative slope resistance in the steady-state I-V relations, 2) a depression of the net sustained outward currents due to depolarizing commands, and 3) a marked reduction in IA. When outward currents had been largely suppressed using high concentrations of tetraethylammonium (TEA) ions (100-460 mM) no effects of the cyclic AMP analogs could be observed on peak inward currents using NA+ and Ca2+ or Ba2+ as carriers of inward current. At least part of these electrical effects of the cyclic AMP analogs could be accounted for by a depression of a delayed potassium current and the A current.

1982 ◽  
Vol 60 (9) ◽  
pp. 1153-1159 ◽  
Author(s):  
Y. Deslauriers ◽  
E. Ruiz-Ceretti ◽  
O. F. Schanne ◽  
M. D. Payet

The electrophysiologic effects of a toxic concentration of ouabain (10−5 M) were studied in frog atrial trabeculae. The toxic concentration was determined by the appearance of a negative inotropic effect and an increase in basal tension. Current- and voltage-clamp measurements were performed. Ouabain did not alter the passive electrical properties of the preparation. Under current-clamp conditions the membrane depolarized and the action potential amplitude as well as its maximum rate of rise decreased. The current–voltage curve for the fast inward current was shifted toward more positive potentials and the maximum sodium current decreased. The maximum sodium conductance was also reduced. The process of reactivation of the fast inward current was accelerated. The slow inward current and the maximum slow conductance also decreased under ouabain. These effects could explain the negative inotropic action of high concentrations of glycosides, as well as the action potential changes observed by several investigators. They also help to understand the arrhythmogenic effects of high concentrations of digitalis.


1980 ◽  
Vol 43 (6) ◽  
pp. 1700-1724 ◽  
Author(s):  
P. C. Schwindt ◽  
W. E. Crill

1. Membrane currents of normal and TEA-injected cat lumbar motoneurons were investigated using the technique of somatic voltage clamp. 2. The current-voltage (I-V) relation of healthy motoneurons contains a region of negative slope conductance caused by a persistent inward current component (Ii). In the most striking examples, Ii is net inward at some potentials between 10 and 30 mV positive to resting potential. 3. Near its activation threshold (greater than or equal to 10 mV positive to rest), Ii does not decrement during prolonged voltage steps and, in most cells, activates very slowly. Ii amplitude increases and time to peak Ii decreases with further small increments of depolarization, and Ii decrements during sustained voltage steps. Maximum Ii amplitude occurs 20--30 mV positive to rest in most cells. Ii is not visible at sufficiently large depolarizations. 4. Ii appears to be mixed with potassium current components at nearly every potential where it is visible. These include a slow outward current first activated near Ii activation threshold, a fast outward current additonally activated at larger depolarizing potentials, and a fast, transient outward current that obscures the true onset of Ii at nearly every potential. 5. Ii is not carried by sodium entering via the fast, transient channels and is present after pharmacological blockage of sodium currents. It is proposed that Ii is predominantly carried by calcium ions. 6. The presence of inward tail currents after repolarization from potentials that activate a steady outward current suggest that Ii remains present but hidden at large depolarizations. Ii inactivation was further investigated in TEA-injected motoneurons since Ii and the tail currents are more prominent in these cells. 7. Conventional recordings from TEA-injected motoneurons suggest that a prolonged, postspike plateau potential is maintained by a persistent inward current. Voltage-clamp data can account for the principal features of the plateau potential. 8. Voltage-clamp results in TEA-injected motoneurons suggest that Ii is subject to little or no inactivation at potentials less than or equal to 30 mV positive to rest and to partial inactivation, at most, at higher potentials during steps lasting less than or equal to 100 ms. The apparent decay of Ii during sustained depolarization is caused by the development of a larger outward current. 9. Ii is similar in several ways to a persistent calcium current observed in some molluscan neurons. Theoretical and experimental results suggest that Ii is generated predominantly in a local region under voltage control and that the observed membrane currents govern somatic membrane potential and cell behavior.


1985 ◽  
Vol 63 (9) ◽  
pp. 1065-1069 ◽  
Author(s):  
Julio L. Alvarez ◽  
Miguel Garcia ◽  
Francisco R. Dorticós ◽  
Jesús A. Morlans

The effects of MnCl2 on outward currents in frog atrial muscle were investigated under voltage-clamp conditions. MnCl2 (3 mmol/L), which completely abolished the slow inward current, produced a decrease in the outward background current (Ib) at potentials positive to −50 mV. The delayed outward current (Ix, time dependent) was not altered by Mn. "Isochronic activation curves" for Ix and decay of current tails at −40 mV remained unaffected after Mn. Effects on Ib probably reflect a decrease in [Formula: see text] related to the decrease in Ca influx as well as a reduction in the Na–Ca exchange current.


Nature ◽  
1983 ◽  
Vol 306 (5945) ◽  
pp. 784-785 ◽  
Author(s):  
Daniel J. Green ◽  
Rhanor Gillette

1990 ◽  
Vol 64 (5) ◽  
pp. 1514-1526 ◽  
Author(s):  
C. G. Onetti ◽  
U. Garcia ◽  
R. F. Valdiosera ◽  
H. Arechiga

1. The patterns of electrical activity and membrane characteristics of a population of neurosecretory-cell somata in the X-organ of the crayfish were investigated with microelectrodes and whole-cell, voltage-clamp techniques. Some neurons (56%) were silent but could be excited by intracellular current injection: other cells showed spontaneous tonic activity (35%), and some had spontaneous bursting activity (9%). The spiking activity was abolished by tetrodotoxin (TTX) exposure and by severing the axon near the cell body. After axotomy, only a small, slow, regenerative depolarization remained that could be blocked by Cd2+. 2. Under voltage clamp the steady-state I-V curve in low [Ca2+]i (9 X 10(-9) M) showed a slope conductance of 16.7 +/- 3.9 (SD) nS (n = 10) at -50 mV and zero current potential of -50.1 +/- 7.7 mV. In current-clamp mode these neurons were either silent or fired tonically. With high [Ca2+]i (1.7 X 10(-6) M) both the slope conductance and inward and outward currents were reduced. In some neurons high [Ca2+]i reveals a negative slope resistance in the range of -46 to -41 mV. It could be supressed by removing [Na+]o, but it was TTX insensitive. These are the neurons that under current clamp showed bursting activity. 3. The main inward current in cell somata was a Ca2+ current of 2 +/- 0.6 nA (n = 18), activated at -40 mV and peaking at 20 mV. It showed relaxation with prolonged pulses. No Na(+)-dependent, TTX-sensitive inward currents were recorded with short (100-ms) pulses in axotomized neurons. 4. Two outward currents could be distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 251 (2) ◽  
pp. C159-C166 ◽  
Author(s):  
A. M. Frace ◽  
S. Hall ◽  
M. S. Brodwick ◽  
D. C. Eaton

Saxitoxin (STX) and several STX analogues from dinoflagellates (genus Protogonyaulax) block sodium conductance in squid giant axons with variable potencies. Toxins, analyzed under voltage clamp, are 21-sulfosaxitoxin, 21-sulfosaxitoxin 11 alpha-hydroxysulfate, 21-sulfosaxitoxin 11 beta-hydroxysulfate, (B1, C1, C2, respectively) and gonyautoxins 2 and 3. The potency sequence for the toxins examined is STX greater than gonyautoxin 3 greater than B1 greater than C2 greater than gonyautoxin 2 much greater than C1. Guanidine, when substituted for sodium in external seawater, reduced the potency of STX to block inward current but did not affect tetrodotoxin activity. Methylguanidine also reduced the ability of STX to block outward sodium current. Inhibitory constants for guanidine and methylguanidine were 116 and 187 mM, respectively. Competition can be explained by binding at or near the toxin binding site but not by surface potential alteration.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S27-S40 ◽  
Author(s):  
T. Kobayashi ◽  
T. Kigawa ◽  
M. Mizuno ◽  
T. Watanabe

ABSTRACT There are several in vitro methods to analyse the function of the adenohypophysis or the mechanisms of its regulation. The present paper deals with single cell culture, organ culture and short term incubation techniques by which the morphology and gonadotrophin-secreting function of the adenohypophysis were studied. In trypsin-dispersed cell culture, the adenohypophysial cells showed extensive propagation to form numerous cell colonies and finally develop into a confluent monolayer cell sheet covering completely the surface of culture vessels. Almost all of the cultured cells, however, became chromophobic, at least at the end of the first week of cultivation, when gonadotrophin was detectable neither in the culture medium nor in the cells themselves. After the addition of the hypothalamic extract, gonadotrophin became detectable again, and basophilic or PAS-positive granules also reappeared within the cells, suggesting that the gonadotrophs were stimulated by the extract to produce gonadotrophin. In organ culture and short term incubation, the incorporation of [3H] leucine into the adenohypophysial cells in relation to the addition of hypothalamic extract was examined. It was obvious that the ability to incorporate [3H] leucine into the gonadotrophs in vitro was highly dependent upon the presence of the hypothalamic extract.


Mutagenesis ◽  
2019 ◽  
Author(s):  
Masahiko Watanabe ◽  
Masae Toudou ◽  
Taeko Uchida ◽  
Misato Yoshikawa ◽  
Hiroaki Aso ◽  
...  

Abstract Mutations in oncogenes or tumour suppressor genes cause increases in cell growth capacity. In some cases, fully malignant cancer cells develop after additional mutations occur in initially mutated cells. In such instances, the risk of cancer would increase in response to growth of these initially mutated cells. To ascertain whether such a situation might occur in cultured cells, three independent cultures of human lymphoblastoid GM00130 cells were treated with N-ethyl-N-nitrosourea to induce mutations, and the cells were maintained for 12 weeks. Mutant frequencies and spectra of the cells at the MspI and HaeIII restriction sites located at codons 247–250 of the TP53 gene were examined. Mutant frequencies at both sites in the gene exhibited a declining trend during cell culture and reached background levels after 12 weeks; this was also supported by mutation spectra findings. These results indicate that the mutations detected under our assay conditions are disadvantageous to cell growth.


1992 ◽  
Vol 20 (1) ◽  
pp. 138-143
Author(s):  
Maria Carrara ◽  
Lorenzo Cima ◽  
Roberto Cerini ◽  
Maurizio Dalle Carbonare

A method has been developed whereby cosmetic products which are not soluble in water or in alcohol can be brought into contact with cell cultures by being placed in a cell culture insert, which is then placed in the cell culture well. Preliminary experiments were carried out with L929 cells, and cytotoxicity was evaluated by measuring neutral red uptake and the total protein content of treated cultured cells. Encouraging results were obtained in comparisons of three cosmetic emulsions and of one emulsion containing a range of concentrations of two preservatives, Kathon CG and Bronopol.


Sign in / Sign up

Export Citation Format

Share Document