Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro

1984 ◽  
Vol 52 (5) ◽  
pp. 892-910 ◽  
Author(s):  
B. E. Alger

An orthodromically evoked late hyperpolarizing potential (LHP) was studied using intracellular recording techniques in rat hippocampal CA1 pyramidal cells in vitro. Several tests indicated that the LHP is not blocked by GABA antagonists, but rather comprises the initial portion of the stimulation-induced burst afterhyperpolarization (AHPs) produced in the presence of these antagonists. Bath application of magnesium (Mg) or 8-bromo adenosine 3',5'-cyclic monophosphate (cAMP), or intracellular injection of ethyleneglycol-bis (beta-amino-ethylether)-N,N'-tetraacetic acid (EGTA) blocked the late portion of the AHPs, at times when the early portion was only slightly or not at all affected. The late part of the AHPs was also associated with the voltage-dependent components of the burst, whereas the early part was not. Both the early part of the burst AHPs and the LHP in standard saline have similar time courses and dependence on membrane potential. The LHP was nullified by hyperpolarization of the membrane in extracellular potassium concentrations [( K]o) of 5.4 mM and below and could be reversed in [K]o above 5.4 mM. The apparent reversal potential for the LHP followed shifts in [K]o as predicted by the Nernst equation and is, therefore, probably a K-dependent potential. No specific antagonist of the LHP from among several K conductance blockers was found, however. An alternative hypothesis, that the LHP might be an electrogenic pump effect was not supported. Ouabain depressed the LHP; however this effect was probably nonspecific and due, in part, to a ouabain-induced increase in [K]o. Decreasing temperature in the range 37-22 degrees C prolonged but did not block the LHP. The LHP was enhanced by increases in extracellular calcium concentration and depressed by high [Mg]o or cadmium. It was associated with a small (14%) decrease in total resting input resistance. In cells depolarized to approximately 0 mV, regenerative voltage-dependent potentials were blocked; however, an LHP still occurred. The LHP was not found to be dependent on the excitatory postsynaptic potential (EPSP). With weak stimuli LHP and EPSP amplitudes were uncorrelated and the EPSP was more resistant than the LHP to block by high [Mg]o. The LHP continued to occur when the EPSP was reversed in depolarized cells. The LHP may be mediated by interneuronal circuitry within a slice. In GABA antagonists the LHP occasionally occurred spontaneously at regular intervals.(ABSTRACT TRUNCATED AT 400 WORDS)

1982 ◽  
Vol 48 (6) ◽  
pp. 1321-1335 ◽  
Author(s):  
M. J. Gutnick ◽  
B. W. Connors ◽  
D. A. Prince

1. The cellular mechanisms underlying interictal epileptogenesis have been examined in an in vitro slice preparation of guinea pig neocortex. Penicillin or bicuculline was applied to the tissue, and intracellular recordings were obtained from neurons and glia. 2. Following convulsant application, stimulation could elicit a short-latency excitatory postsynaptic potential (EPSP) and a large, longer latency depolarization shift (DS) in single neurons. DSs in neurons of the slice were very similar to those evoked in neurons of neocortex in vivo in that they displayed an all-or-none character, large shifts in latency during repetitive stimuli, long afterpotentials, and a prolonged refractory period. In contrast to epileptogenesis produced by penicillin in intact cortex, neither spontaneous DSs nor ictal episodes were observed in neocortical slices. 3. In simultaneous recordings from pairs of neurons within the same cortical column, DS generation and latency shifts were invariably synchronous. DS generation in neurons was also coincident with large, paroxysmal increases of extracellular [K+], as indicated by simultaneous recordings from glia. 4. When polarizing currents were applied to neurons injected with the local anesthetic QX-314, the DS amplitude varied monotonically and had an extrapolated reversal potential near 0 mV. In neurons injected with the K+-current blocker Cs+, large displacements of membrane potential were possible, and both the short-latency EPSP and the peak of the DS diminished completely at about 0 mV. At potentials positive to this, the short-latency EPSP was reversed, and the DS was replaced by a paroxysmal hyperpolarization whose rise time and peak latency were prolonged compared to the DS evoked at resting potential. The paroxysmal hyperpolarization probably represents the prolonged activation of the impaled neuron by EPSPs. 5. Voltage-dependent components, including slow spikes, appeared to contribute to generation of the DS at resting potential in Cs+-filled cells, and these components were blocked during large depolarizations. 6. The results suggest that DS generation in single neocortical neurons occurs during synchronous synaptic activation of a large group of cells. DS onset in a given neuron is determined by the timing of a variable-latency excitatory input that differs from the short-latency EPSP. The DS slow envelope appears to be generated by long-duration excitatory synaptic currents and may be modulated by intrinsic voltage-dependent membrane conductances. 7. We present a hypothesis for the initiation of the DS, based on the anatomical and physiological organization of the intrinsic neocortical circuits.


1991 ◽  
Vol 66 (6) ◽  
pp. 1902-1911 ◽  
Author(s):  
A. Kamondi ◽  
P. B. Reiner

1. Intracellular recordings were obtained from histaminergic tuberomammillary (TM) neurons of rat hypothalamus in an in vitro slice preparation. The properties of a time- and voltage-dependent inward current activated on hyperpolarization, Ih, were studied by use of the single-electrode voltage-clamp technique. 2. The activation curve of Ih was well fit by a sigmoidal function, with half-maximal activation occurring at -98 +/- 6 mV. 3. The estimated reversal potential of Ih (Eh) in TM neurons was -35 +/- 9 (SD) mV. 4. The time constant of activation was well fit by a single exponential function and exhibited marked voltage dependence: at -90 mV, Ih activated with a time constant of 823 +/- 35 ms, whereas at -130 mV, Ih activated with a time constant of 280 +/- 65 ms. The time constant of deactivation of Ih at -60 mV was 302 +/- 35 ms. 5. Raising the extracellular potassium concentration ([K+]o) to 10 mM shifted Eh to a more depolarized value, while lowering the extracellular sodium concentration [( Na+]o) shifted Eh in the negative direction. Altering the extracellular chloride concentration ([Cl-]o) had little effect on Eh. 6. Increasing [K+]o to 10 mM increased the amplitude of both Ih and its underlying conductance gh, while reducing [Na+]o caused a small reduction in the amplitude of Ih with no measurable effect on gh. 7. The time constant of activation of Ih became shorter in raised [K+]o and longer in lowered [Na+]o. 8. Extracellularly applied cesium blocked Ih in a voltage-dependent manner. Extracellular barium reduced Ih but was less effective than cesium. 9. We conclude that Ih, carried by sodium and potassium ions, accounts for inward rectification of TM neurons. By increasing the whole-cell conductance during periods of prolonged hyperpolarization, Ih may act as an ionic shunt, decreasing the efficacy of synaptic inputs. This effect would be most apparent during rapid-eye-movement sleep, when TM neurons fall silent.


1988 ◽  
Vol 59 (5) ◽  
pp. 1352-1376 ◽  
Author(s):  
G. F. Tseng ◽  
L. B. Haberly

1. Intracellular recordings were obtained from anatomically verified layer II pyramidal cells in slices from rat piriform cortex cut perpendicular to the surface. 2. Responses to afferent and association fiber stimulation at resting membrane potential consisted of a depolarizing potential followed by a late hyperpolarizing potential (LHP). Membrane polarization by current injection revealed two components in the depolarizing potential: an initial excitatory postsynaptic potential (EPSP) followed at brief latency by an inhibitory postsynaptic potential (IPSP) that inverted with membrane depolarization and truncated the duration of the EPSP. 3. The early IPSP displayed the following characteristics suggesting mediation by gamma-aminobutyric acid (GABA) receptors linked to Cl- channels: associated conductance increase, sensitivity to increases in internal Cl- concentration, blockage by picrotoxin and bicuculline, and potentiation by pentobarbital sodium. The reversal potential was in the depolarizing direction with respect to resting membrane potential so that the inhibitory effect was exclusively via current shunting. 4. The LHP had an associated conductance increase and a reversal potential of -90 mV in normal bathing medium that shifted according to Nernst predictions for a K+ potential with changes in external K+ over the range 4.5-8 mM indicating mediation by the opening of K+ channels and ruling out an electrogenic pump origin. 5. Lack of effect of bath-applied 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) or internally applied ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) on the LHP and failure of high amplitude, direct membrane depolarization to evoke a comparable potential, argue against endogenous mediation of the LHP by a Ca2+ activated K+ conductance [gK(Ca)]. However, an apparent endogenously mediated gK(Ca) with a duration much greater than the LHP was observed in a low percent of layer II pyramidal cells. Lack of effect of 8-Br-cAMP also indicates a lack of dependence of the LHP on cAMP. 6. Other characteristics of the LHP that were demonstrated include: a lack of blockage by GABAA receptor antagonists, a probable voltage sensitivity (decrease in amplitude in the depolarizing direction), and an apparent brief onset latency (less than 10 ms) when the early IPSP was blocked by picrotoxin. The LHP was unaffected by pentobarbital sodium when the early IPSP was blocked by picrotoxin. 7. Both the LHP and early IPSP were blocked by low Ca2+/high Mg2+, consistent with disynaptic mediation.(ABSTRACT TRUNCATED AT 400 WORDS)


1987 ◽  
Vol 57 (2) ◽  
pp. 496-509 ◽  
Author(s):  
M. McCarren ◽  
B. E. Alger

We have used the rat hippocampal slice preparation as a model system for studying the epileptogenic consequences of a reduction in neuronal Na+-K+ pump activity. The cardiac glycosides (CGs) strophanthidin and dihydroouabain were used to inhibit the pump. These drugs had readily reversible effects, provided they were not applied for longer than 15-20 min. Hippocampal CA1 pyramidal cells were studied with intracellular recordings; population spike responses and changes in extracellular potassium concentration ([K+]o) were also measured in some experiments. This investigation focused on the possibility that intrinsic neuronal properties are affected by Na+-K+ pump inhibitors. The CGs altered the CA1 population response evoked by an orthodromic stimulus from a single spike to an epileptiform burst. Measurements of [K+]o showed that doses of CGs sufficient to cause bursting were associated with only minor (less than 1 mM) changes in resting [K+]o. However, the rate of K+ clearance from the extracellular space was moderately slowed, confirming that a decrease in pump activity had occurred. Intracellular recording indicated that CG application resulted in a small depolarization and apparent increase in resting input resistance of CA1 neurons. Although CGs caused a decrease in fast gamma-aminobutyric acid mediated inhibitory postsynaptic potentials (IPSPs), CGs could also enhance the latter part of the epileptiform burst induced by picrotoxin, an antagonist of these IPSPs. Since intrinsic Ca2+ conductances comprise a significant part of the burst, this suggested the possibility that Na+-K+ pump inhibitors affected an intrinsic neuronal conductance. CGs decreased the threshold for activation of Ca2+ spikes (recorded in TTX and TEA) without enhancing the spikes themselves, indicating that a voltage-dependent subthreshold conductance might be involved. The action of CGs on Ca2+ spike threshold could not be mimicked by increasing [K+]o up to 10 mM. A variety of K+ conductance antagonists, including TEA, 4-AP, Ba2+ (in zero Ca2+), and carbachol were ineffective in preventing the CG-induced threshold shift of the Ca2+ spike. The shift was also seen in the presence of a choline-substituted low Na+ saline. Enhancement of a slow inward Ca2+ current is a possible mechanism for the decrease in Ca2+ spike threshold; however, it is impossible to use the Ca2+ spike as an assay when testing the effects of blocking Ca2+ conductances. Therefore, we studied the influence of CGs on the membrane current-voltage (I-V) curve, since persistent voltage-dependent conductances appear as nonlinearities in the I-V plot obtained under current clamp.(ABSTRACT TRUNCATED AT 400 WORDS)


1990 ◽  
Vol 63 (1) ◽  
pp. 72-81 ◽  
Author(s):  
A. Williamson ◽  
B. E. Alger

1. In rat hippocampal pyramidal cells in vitro, a brief train of action potentials elicited by direct depolarizing current pulses injected through an intracellular recording electrode is followed by a medium-duration afterhyperpolarization (mAHP) and a longer, slow AHP. We studied the mAHP with the use of current-clamp techniques in the presence of dibutyryl cyclic adenosine 3',5'-monophosphate (cAMP) to block the slow AHP and isolate the mAHP. 2. The mAHP evoked at hyperpolarized membrane potentials was complicated by a potential generated by the anomalous rectifier current, IQ. The mAHP is insensitive to chloride ions (Cl-), whereas it is sensitive to the extracellular potassium concentration ([K+]o). 3. At slightly depolarized levels, the mAHP is partially Ca2+ dependent, being enhanced by increased [Ca2+]o and BAY K 8644 and depressed by decreased [Ca2+]o, nifedipine, and Cd2+. The Ca2(+)-dependent component of the mAHP was also reduced by 100 microM tetraethylammonium (TEA) and charybdotoxin (CTX), suggesting it is mediated by the voltage- and Ca2(+)-dependent K+ current, IC. 4. Most of the Ca2(+)-independent mAHP was blocked by carbachol, implying that IM plays a major role. In a few cells, a small Ca2(+)- and carbachol-insensitive mAHP component was detectable, and this component was blocked by 10 mM TEA, suggesting it was mediated by the delayed rectifier current, IK. The K+ channel antagonist 4-aminopyridine (4-AP, 500 microM) did not reduce the mAHP. 5. We infer that the mAHP is a complex potential due either to IQ or to the combined effects of IM and IC. The contributions of each current depend on the recording conditions, with IC playing a role when the cells are activated from depolarized potentials and IM dominating at the usual resting potential. IQ is principally responsible for the mAHP recorded at hyperpolarized membrane potentials.


2005 ◽  
Vol 93 (6) ◽  
pp. 3504-3523 ◽  
Author(s):  
Kenji Morita ◽  
Kunichika Tsumoto ◽  
Kazuyuki Aihara

Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input–output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo–like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input–output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.


2013 ◽  
Vol 110 (8) ◽  
pp. 1930-1944 ◽  
Author(s):  
Franck Dubruc ◽  
David Dupret ◽  
Olivier Caillard

In the hippocampus, activity-dependent changes of synaptic transmission and spike-timing coordination are thought to mediate information processing for the purpose of memory formation. Here, we investigated the self-tuning of intrinsic excitability and spiking reliability by CA1 hippocampal pyramidal cells via changes of their GABAergic inhibitory inputs and endocannabinoid (eCB) signaling. Firing patterns of CA1 place cells, when replayed in vitro, induced an eCB-dependent transient reduction of spontaneous GABAergic activity, sharing the main features of depolarization-induced suppression of inhibition (DSI), and conditioned a transient improvement of spike-time precision during consecutive burst discharges. When evaluating the consequences of DSI on excitatory postsynaptic potential (EPSP)-spike coupling, we found that transient reductions of uncorrelated (spontaneous) or correlated (feedforward) inhibition improved EPSP-spike coupling probability. The relationship between EPSP-spike-timing reliability and inhibition was, however, more complex: transient reduction of correlated (feedforward) inhibition disrupted or improved spike-timing reliability according to the initial spike-coupling probability. Thus eCB-mediated tuning of pyramidal cell spike-time precision is governed not only by the initial level of global inhibition, but also by the ratio between spontaneous and feedforward GABAergic activities. These results reveal that eCB-mediated self-tuning of spike timing by the discharge of pyramidal cells can constitute an important contribution to place-cell assemblies and memory formation in the hippocampus.


2014 ◽  
Vol 112 (3) ◽  
pp. 631-643 ◽  
Author(s):  
Allan Kjeldsen Hansen ◽  
Steen Nedergaard ◽  
Mogens Andreasen

Behavior-associated theta-frequency oscillation in the hippocampal network involves a patterned activation of place cells in the CA1, which can be accounted for by a somatic-dendritic interference model predicting the existence of an intrinsic dendritic oscillator. Here we describe an intrinsic oscillatory mechanism in apical dendrites of in vitro CA1 pyramidal cells, which is induced by suprathreshold depolarization and consists of rhythmic firing of slow spikes in the theta-frequency band. The incidence of slow spiking (29%) increased to 78% and 100% in the presence of the β-adrenergic agonist isoproterenol (2 μM) or 4-aminopyridine (2 mM), respectively. Prior depolarization facilitated the induction of slow spiking. Applied electrical field polarization revealed a distal dendritic origin of slow spikes. The oscillations were largely insensitive to tetrodotoxin, but blocked by nimodipine (10 μM), indicating that they depend on activation of L-type Ca2+ channels. Antagonists of T-, R-, N-, and P/Q-type Ca2+ channels had no detectable effect. The slow spike dimension and frequency was sensitive to 4-aminopyridine (0.1–2 mM) and TEA (10 mM), suggesting the contribution from voltage-dependent K+ channels to the oscillation mechanism. α-Dendrotoxin (10 μM), stromatoxin (2 μM), iberiotoxin (0.2 μM), apamin (0.5 μM), linorpidine (30 μM), and ZD7288 (20 μM) were without effect. Oscillations induced by sine-wave current injection or theta-burst synaptic stimulation were voltage-dependently attenuated by nimodipine, indicating an amplifying function of L-type Ca2+ channels on imposed signals. These results show that the apical dendrites have intrinsic oscillatory properties capable of generating rhythmic voltage fluctuations in the theta-frequency band.


1983 ◽  
Vol 61 (8) ◽  
pp. 841-846 ◽  
Author(s):  
I. Mody ◽  
P. Leung ◽  
J. J. Miller

Perfusion of 50 μM norepinephrine (NE) produced a marked, reversible decrease (range 20–28%) of the extracellular population spike and excitatory postsynaptic potential (EPSP) responses of the CA1 region evoked by stratum radiatum stimulation in the rat hippocampal slice preparation. The effects of NE were dramatically altered in slices obtained from animals which were previously treated with intracerebral or intraventricular injections of 6-hydroxydopamine (6-OHDA) to destroy forebrain catecholamine systems. In the latter preparations NE produced a reduction in the inhibition of the EPSP (50%), enhancement of the population spike amplitude, and multiple spike discharges characteristic of ongoing epileptiform activity. The reversal of NE-induced inhibition and the generation of seizurelike activity in 6-OHDA-treated animals suggests that NE may, in part, act upon interneurons to produce a disinhibition of CA1 pyramidal cells.


2019 ◽  
Author(s):  
Yasunobu Murata ◽  
Matthew T. Colonnese

AbstractGABAergic interneurons are proposed to be critical for early activity and synapse formation by directly exciting, rather than inhibiting, neurons in developing hippocampus and neocortex. However, the role of GABAergic neurons in the generation of neonatal network activity has not been tested in vivo, and recent studies have challenged the excitatory nature of early GABA. By locally manipulating interneuron activity in unanesthetized neonatal mice, we show that GABAergic neurons are indeed excitatory in hippocampus at postnatal-day 3 (P3), and responsible for most of the spontaneous firing of pyramidal cells at that age. Hippocampal interneurons become inhibitory by P7, whereas cortical interneurons are inhibitory at P3 and remain so throughout development. This regional and age heterogeneity is the result of a change in chloride reversal potential as activation of light-gated anion channels expressed in glutamatergic neurons causes firing in hippocampus at P3, but silences it at P7. This study in the intact brain reveals a critical role for GABAergic interneuron excitation in neonatal hippocampus, and a surprising heterogeneity of interneuron function in cortical circuits that was not predicted from in vitro studies.


Sign in / Sign up

Export Citation Format

Share Document