Activity-dependent disinhibition. III. Desensitization and GABAB receptor-mediated presynaptic inhibition in the hippocampus in vitro

1989 ◽  
Vol 61 (3) ◽  
pp. 524-533 ◽  
Author(s):  
S. M. Thompson ◽  
B. H. Gahwiler

1. Single-electrode voltage-clamp recordings were made from CA3 pyramidal cells in organotypic hippocampal slice cultures for measurement of membrane currents underlying both the gamma-aminobutyric acid (GABA)-mediated, Cl- -dependent inhibitory postsynaptic potential (IPSC), evoked in response to stimulation of the mossy fiber pathway, and responses to iontophoretically applied GABA. Pre- and postsynaptic mechanisms mediating activity-dependent reductions in the conductance underlying the IPSC (gIPSC) were investigated. 2. During 99-s applications of GABA, the mean evoked conductance (gGABA) decreased 43% with an initial time constant of 51 s. Desensitization was never complete. 3. Ca2+-influx, activated with depolarizing voltage commands of 100-ms to 15-s duration in the presence of intracellular Cs+, had no effect on GABA responses. 4. Iontophoretic application of the GABAA-receptor agonist muscimol caused a rapid decrease of 80-100% in the amplitude of IPSCs evoked at depolarized membrane potentials (Vm). Recovery was 80% complete in 30 s. The second of two paired applications of muscimol, delivered at the same iontophoretic intensity, was reduced in amplitude 35%. This was shown to result from a decrease in driving force rather than from desensitization. We conclude that muscimol decreases IPSCs by causing an increase in the intracellular Cl- concentration. 5. Iontophoretic application of the GABAB-receptor agonist (+/-)-baclofen caused a decrease of only 30% in the amplitude of IPSCs evoked at depolarized Vms. This effect outlasted the post-synaptic effects of baclofen; recovery was 80% complete between 60 and 90 s. 6. Bath application of (-)-baclofen was found to decrease gIPSC without affecting the IPSC reversal potential. This effect was rapid in onset, could be observed at concentrations as low as 1 X 10(-7) M, and recovered quickly. The EC50 was roughly 5 X 10(-7) M and appeared similar to that for the baclofen-activated increase in postsynaptic conductance. No effect on responses to iontophoretically applied GABA was observed, demonstrating that baclofen decreases gIPSC by reducing presynaptic release via GABAB receptors. 7. Iontophoretic application of GABA reduced IPSCs in a dose-dependent manner. At low iontophoretic intensities, IPSCs were reduced only 30% and recovered slowly, as with baclofen iontophoresis. At higher iontophoretic intensities, IPSCs were more completely blocked. Recovery was initially fast, but took 60-90 s to be complete.(ABSTRACT TRUNCATED AT 400 WORDS)

1996 ◽  
Vol 76 (2) ◽  
pp. 1166-1179 ◽  
Author(s):  
S. B. Kombian ◽  
J. A. Zidichouski ◽  
Q. J. Pittman

1. The effect of gamma-aminobutyric acid-B (GABAB)-receptor activation on excitatory synaptic transmission in the rat supraoptic nucleus (SON) was examined using the nystatin perforated-patch whole cell recording technique in coronal hypothalamic slices. 2. Stimulation of the hypothalamic region dorso-medial to the SON elicited glutamate and GABAA-receptor-mediated synaptic responses in electrophysiologically identified magnocellular neurosecretory cells. 3. Bath application of the GABAB-receptor agonist, +/- -baclofen reversibly reduced pharmacologically isolated, glutamate-mediated excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner. At the concentrations used, baclofen altered neither the postsynaptic conductances of these cells nor their response to bath applied alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). 4. The baclofen-induced synaptic depression was accompanied by an increase in paired pulse facilitation (PPF). This increase in PPF, as well as the synaptic depression, was blocked by the GABAB-receptor antagonists CGP36742 and saclofen. 5. In addition to blocking the actions of baclofen in this nucleus, CGP36742 caused an increase in the evoked EPSC amplitude without altering postsynaptic cell conductances or responses induced by bath-applied AMPA. Contrary to the action of CGP36742, saclofen caused a baclofen-like depression of the evoked EPSC, suggesting that it may act as a partial GABAB receptor agonist. 6. These results indicate that the activation of presynaptic GABAB receptors reduces fast excitatory synaptic transmission in the SON. They further suggest that presynaptic GABAB receptors may be tonically activated in vitro. Thus GABAB receptors may influence the level of activity and excitation of SON neurons and hence modulate the secretion of the regulatory neuropeptides vasopressin and oxytocin.


1989 ◽  
Vol 61 (3) ◽  
pp. 512-523 ◽  
Author(s):  
S. M. Thompson ◽  
B. H. Gahwiler

1. Single-electrode voltage-clamp recordings were made from CA3 pyramidal cells in organotypic hippocampal slice cultures for measurement of membrane currents underlying both the gamma-aminobutyric acid (GABA)-mediated, Cl- -dependent inhibitory postsynaptic potential (IPSC), evoked in response to stimulation of the mossy fiber pathway, and responses to iontophoretically applied GABA. Their reversal potentials are presumed to equal the equilibrium potential for Cl- (37). Mechanisms underlying activity-dependent increases in the intracellular concentration of Cl- ([Cl-]i) were investigated by describing active and passive pathways for Cl- influx and efflux. 2. During 99-s applications of GABA, driving force declined by 51% due to increases in [Cl-]i; thus passive Cl- influx through GABA-activated pathways can significantly affect [Cl-]i. 3. Decreasing the extracellular K+ concentration ([K+]o) from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean IPSC reversal potential (EIPSC) from -67.6 to -81.9 mV, even when membrane potential (Vm) was maintained constant and depolarized with respect to EIPSC. 4. Decreasing [K+]o from 5.8 to 1 mM caused a rapid hyperpolarizing shift in the mean GABA reversal potential (EGABA) from -64.7 to -81.1 mV, even when Vm was maintained constant and depolarized with respect to EGABA. Reducing the extracellular Cl- concentration from 153 to 89 mM, while maintaining [K+]o constant at 1 mM, shifted the mean EGABA from -81.1 to -66.2 mV, an amount close to that predicted by the Nernst equation for Cl-. We conclude that reducing [K+]o caused a hyperpolarizing shift in EGABA and EIPSC by decreasing [Cl-]i. 5. The shift of EIPSC and EGABA upon alteration of [K+]o did not result from contamination of the responses by additional K+-mediated components because it was unaffected by block of K+ channels with intracellular Cs+. 6. Reducing the extracellular Na+ concentration from 141 to 70 mM had no effect on EGABA. 7. Furosemide, bath-applied at 5 X 10(-4) M while holding Vm depolarized with respect to EIPSC, caused a rapid, reversible decrease in IPSC driving force averaging 69%, consistent with the presence of a furosemide-sensitive outward Cl- -transport system. 8. Reducing [K+]o from 5.8 to 1 mM in the presence of 5 X 10(-4) M furosemide produced a smaller shift of EIPSC from -61.0 to -71.2 mV, however, after washout of furosemide from [K+]o = 1 mM saline, EIPSC shifted further to -89.8 mV.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 79 (3) ◽  
pp. 1341-1348 ◽  
Author(s):  
Olivier Caillard ◽  
Heather A. McLean ◽  
Yehezkel Ben-Ari ◽  
Jean-Luc Gaïarsa

Caillard, Olivier, Heather A. McLean, Yehezkel Ben-Ari, and Jean-Luc Gaı̈arsa. Ontogenesis of presynaptic GABAB receptor-mediated inhibition in the CA3 region of the rat hippocampus. J. Neurophysiol. 79: 1341–1348, 1998. γ-Aminobutyric acid-B(GABAB) receptor-dependent and -independent components of paired-pulse depression (PPD) were investigated in the rat CA3 hippocampal region. Intracellular and whole cell recordings of CA3 pyramidal neurons were performed on hippocampal slices obtained from neonatal (5–7 day old) and adult (27–34 day old) rats. Electrical stimulation in the hilus evoked monosynaptic GABAA postsynaptic currents (eIPSCs) isolated in the presence of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM) and d(−)2-amino-5-phosphovaleric acid (d-AP5, 50 μM) with 2(triethylamino)- N-(2,6-dimethylphenyl) acetamine (QX314) filled electrodes. In adult CA3 pyramidal neurons, when a pair of identical stimuli was applied at interstimulus intervals (ISIs) ranging from 50 to 1,500 ms the amplitude of the second eIPSC was depressed when compared with the first eIPSC. This paired-pulse depression (PPD) was partially blockedb y  P - 3 - a m i n o p r o p y l - P - d i e t h o x y m e t h y l  p h o s p h o r i c  a c i d(CGP35348, 0.5 mM), a selective GABAB receptor antagonist. In neonates, PPD was restricted to ISIs shorter than 200 ms and was not affected by CGP35348. The GABAB receptor agonist baclofen reduced the amplitude of eIPSCs in a dose-dependent manner with the same efficiency in both adults and neonates. Increasing the probability of transmitter release with high Ca2+ (4 mM)/low Mg2+ (0.3 mM) external solution revealed PPD in neonatal CA3 pyramidal neurons that was 1) partially prevented by CGP35348, 2) independent of the membrane holding potential of the recorded cell, and 3) not resulting from a change in the reversal potential of GABAA eIPSCs. In adults the GABA uptake blocker tiagabine (20 μM) increased the duration of eIPSCs and the magnitude of GABAB receptor-dependent PPD. In neonates, tiagabine also increased duration of eIPSCs but to a lesser extent than in adult and did not reveal a GABAB receptor-dependent PPD. These results demonstrate that although GABAB receptor-dependent and -independent mechanisms of presynaptic inhibition are present onGABAergic terminals and functional, they do not operate at the level of monosynaptic GABAergic synaptic transmission at early stages of development. Absence of presynaptic autoinhibition of GABA release seems to be due to the small amount of transmitter that can access presynaptic regulatory sites.


1998 ◽  
Vol 79 (3) ◽  
pp. 1508-1517 ◽  
Author(s):  
Didier Mouginot ◽  
Samuel B. Kombian ◽  
Quentin J. Pittman

Mouginot, Didier, Samuel B. Kombian, and Quentin J. Pittman. Activation of presynaptic GABAB receptors inhibits evoked IPSCs in rat magnocellular neurons in vitro. J. Neurophysiol. 79: 1508–1517, 1998. Whole cell recordings (nystatin-perforated patch) were carried out on magnocellular neurons of the rat supraoptic nucleus (SON) to study the modulation of inhibitory postsynaptic currents (IPSCs) by γ-aminobutyric acid-B (GABAB) receptors. Field stimulation adjacent to the SON in the presence of kynurenic acid, evoked monosynaptic GABAergic IPSCs. Baclofen reversibly reduced the amplitude of the IPSCs in a dose-dependent manner (EC50: 0.68 μM) without apparent effect on the holding current ( V h = −80 mV) or input resistance and altered neither the kinetic properties, nor the reversal potential of IPSCs. Concomittant to IPSC depression, baclofen enhanced the paired-pulse ratio for two consecutive IPSCs [interstimulus interval (ISI): 50 ms], an effect consistent with a presynaptic locus of action. Both actions of baclofen were abolished by CGP35348 (500 μM), a GABAB receptor antagonist. In testing for involvement of synaptically activated presynaptic GABAB receptors, we only recorded paired-pulse facilitation at most ISIs tested (50–500 ms), suggesting that the classical GABAB autoreceptors may not normally be activated in our conditions. However, enhancement of local GABA concentration by perfusion of a GABA uptake inhibitor (NO-711) revealed an action of endogenous GABA at these presynaptic GABAB receptors. The nonselective K+ channel blocker Ba2+ abolished baclofen's effect and pertussis toxin (PTX) pretreatment (200–500 ng/ml for 18–24 h) was ineffective in blocking the baclofen-induced inhibition, making an involvement of PTX-sensitive G protein unlikely. The present results show that presynaptic GABAB receptors that are coupled to PTX-insensitive G-proteins may be activated by endogenous GABA under conditions of reduced GABA uptake, thus regulating the inhibitory synaptic input to SON.


1993 ◽  
Vol 265 (2) ◽  
pp. R348-R355 ◽  
Author(s):  
V. L. Trudeau ◽  
B. D. Sloley ◽  
R. E. Peter

The involvement of gamma-aminobutyric acid (GABA) in regulation of pituitary gonadotropin-II (GTH-II) release was studied in the goldfish. Intraperitoneal injection of GABA (300 micrograms/g) stimulated an increase in serum GTH-II levels at 30 min postinjection. The GABAA receptor agonist muscimol (0.1-10 micrograms/g) stimulated GTH-II in a dose-dependent manner. Baclofen, a GABAB receptor agonist, had a small but significant stimulatory effect at 1 and 10 micrograms/g; the amount of GTH-II released in response to baclofen was significantly less (P < 0.05) than that released by muscimol. Pretreatment of goldfish with bicuculline, a GABAA receptor antagonist, but not saclofen, a GABAB receptor antagonist, blocked the stimulatory effect of GABA on serum GTH-II. Elevation of brain and pituitary GABA levels with the GABA transaminase inhibitor, gamma-vinyl-GABA (GVG), decreased hypothalamic and pituitary dopamine (DA) turnover rates, indicating that GABA may stimulate GTH-II release in the goldfish by decreasing dopaminergic inhibition of GTH-II release. The release of GTH-II stimulated by muscimol and GVG was potentiated by pharmacological agents that decrease inhibitory dopaminergic tone, indicating that DA may also inhibit GABA-stimulated GTH-II release. Based on the linear 24-h accumulation of GABA in brain and pituitary after GVG injection, implantation of testosterone, estradiol, or progesterone, previously shown to regulate the serum GTH-II release response to gonadotropin-releasing hormone and GABA, was also found to modulate GABA synthesis in the brain and pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 85 (6) ◽  
pp. 2381-2387
Author(s):  
Valeri Lopantsev ◽  
Philip A. Schwartzkroin

Changes in intracellular chloride concentration, mediated by chloride influx through GABAA receptor–gated channels, may modulate GABAB receptor–mediated inhibitory postsynaptic potentials (GABAB IPSPs) via unknown mechanisms. Recording from CA3 pyramidal cells in hippocampal slices, we investigated the impact of chloride influx during GABAA receptor–mediated IPSPs (GABAA IPSPs) on the properties of GABAB IPSPs. At relatively positive membrane potentials (near −55 mV), mossy fiber–evoked GABAB IPSPs were reduced (compared with their magnitude at −60 mV) when preceded by GABAAreceptor–mediated chloride influx. This effect was not associated with a correlated reduction in membrane permeability during the GABAB IPSP. The mossy fiber–evoked GABAB IPSP showed a positive shift in reversal potential (from −99 to −93 mV) when it was preceded by a GABAA IPSP evoked at cell membrane potential of −55 mV as compared with −60 mV. Similarly, when intracellular chloride concentration was raised via chloride diffusion from an intracellular microelectrode, there was a reduction of the pharmacologically isolated monosynaptic GABABIPSP and a concurrent shift of GABAB IPSP reversal potential from −98 to −90 mV. We conclude that in hippocampal pyramidal cells, in which “resting” membrane potential is near action potential threshold, chloride influx via GABAA IPSPs shifts the reversal potential of subsequent GABAB receptor–mediated postsynaptic responses in a positive direction and reduces their magnitude.


1993 ◽  
Vol 69 (5) ◽  
pp. 1541-1555 ◽  
Author(s):  
L. M. Grover ◽  
N. A. Lambert ◽  
P. A. Schwartzkroin ◽  
T. J. Teyler

1. Activation of GABAA receptors can produce both hyperpolarizing and depolarizing responses in CA1 pyramidal cells. The hyperpolarizing response is mediated by a Cl- conductance, but the ionic basis of the depolarizing response is not clear. We compared the GABAA receptor-mediated depolarizations induced by synaptically released gamma-aminobutyric acid [GABA; depolarizing inhibitory postsynaptic potentials (dIPSPs)] with those produced by exogenous GABA (depolarizing GABA responses). Short trains of high-frequency (200 Hz) stimuli were used to generate dIPSPs. We found that dIPSPs generated by trains of stimuli and depolarizing responses to exogenous GABA were accompanied by a conductance increase and had a similar reversal potential, indicating a similar ionic basis for both responses. 2. We wished to determine whether an HCO3- current contributed to the GABAA-mediated depolarizations. We found that dIPSPs and depolarizing GABA responses were sensitive to perfusion with HCO3(-)-free medium. Interpretation of these data was complicated by the mixed nature of the responses: dIPSPs were invariably accompanied by conventional, Cl(-)-mediated fast hyperpolarizing IPSPs (fIPSPs), and response to exogenous GABA usually consisted of biphasic hyperpolarizing and depolarizing responses. However, it was sometimes possible to elicit responses to GABA that appeared purely depolarizing (monophasic depolarizing GABA responses). 3. We analyzed monophasic depolarizing GABA responses and found no change in reversal potential when slices were perfused with HCO(3-)-free medium. We also made whole-cell recordings from CA1 pyramidal cells, attempting to reduce [HCO3-]i, and compared the reversal potential for monophasic depolarizing GABA responses with similar responses recorded with fine intracellular microelectrodes. We found no difference in reversal potential. We also examined effects of the carbonic anhydrase inhibitor acetazolamide (ACTZ) on depolarizing GABA responses. ACTZ reduced these responses but did not change their reversal potential. 4. Effects of HCO(3-)-free medium were not specific to GABAA receptor-mediated responses. GABAB receptor-mediated slow IPSPs (sIPSPs) were also reduced, as were excitatory postsynaptic potentials (EPSPs). Analyses of field potentials and spontaneous fIPSPs suggested a decrease in presynaptic excitability during perfusion with HCO(3-)-free medium. In addition, pyramidal cells showed decreased input resistance when perfused with HCO(3-)-free medium. 5. The sensitivity of GABAA receptor-mediated depolarizations to HCO(3-)-free medium can be explained by a decrease in presynaptic excitability and an increased resting conductance in postsynaptic neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 79 (3) ◽  
pp. 1360-1370 ◽  
Author(s):  
Karl Obrietan ◽  
Anthony N. van den Pol

Obrietan, K. and Anthony N. van den Pol. GABAB receptor-mediated inhibition of GABAA receptor calcium elevations in developing hypothalamic neurons. J. Neurophysiol. 79: 1360–1370, 1998. In the CNS, γ-aminobutyric acid (GABA) affects neuronal activity through both the ligand-gated GABAA receptor channel and the G protein-coupled GABAB receptor. In the mature nervous system, both receptor subtypes decrease neural excitability, whereas in most neurons during development, the GABAA receptor increases neural excitability and raises cytosolic Ca2+ levels. We used Ca2+ digital imaging to test the hypothesis that GABAA receptor-mediated Ca2+ rises were regulated by GABAB receptor activation. In young, embryonic day 18, hypothalamic neurons cultured for 5 ± 2 days in vitro, we found that cytosolic Ca2+ rises triggered by synaptically activated GABAA receptors were dramatically depressed (>80%) in a dose-dependent manner by application of the GABAB receptor agonist baclofen (100 nM–100 μM). Coadministration of the GABAB receptor antagonist 2-hydroxy-saclofen or CGP 35348 reduced the inhibitory action of baclofen. Administration of the GABAB antagonist alone elicited a reproducible Ca2+ rise in >25% of all synaptically active neurons, suggesting that synaptic GABA release exerts a tonic inhibitory tone on GABAA receptor-mediated Ca2+ rises via GABAB receptor activation. In the presence of tetrodotoxin the GABAA receptor agonist muscimol elicited robust postsynaptic Ca2+ rises that were depressed by baclofen coadministration. Baclofen-mediated depression of muscimol-evoked Ca2+ rises were observed in both the cell bodies and neurites of hypothalamic neurons taken at embryonic day 15 and cultured for three days, suggesting that GABAB receptors are functionally active at an early stage of neuronal development. Ca2+ rises elicited by electrically induced synaptic release of GABA were largely inhibited (>86%) by baclofen. These results indicate that GABAB receptor activation depresses GABAA receptor-mediated Ca2+ rises by both reducing the synaptic release of GABA and decreasing the postsynaptic Ca2+ responsiveness. Collectively, these data suggest that GABAB receptors play an important inhibitory role regulating Ca2+ rises elicited by GABAA receptor activation. Changes in cytosolic Ca2+ during early neural development would, in turn, profoundly affect a wide array of physiological processes, such as gene expression, neurite outgrowth, transmitter release, and synaptogenesis.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gertrudis Perea ◽  
Ricardo Gómez ◽  
Sara Mederos ◽  
Ana Covelo ◽  
Jesús J Ballesteros ◽  
...  

Interneurons are critical for proper neural network function and can activate Ca2+ signaling in astrocytes. However, the impact of the interneuron-astrocyte signaling into neuronal network operation remains unknown. Using the simplest hippocampal Astrocyte-Neuron network, i.e., GABAergic interneuron, pyramidal neuron, single CA3-CA1 glutamatergic synapse, and astrocytes, we found that interneuron-astrocyte signaling dynamically affected excitatory neurotransmission in an activity- and time-dependent manner, and determined the sign (inhibition vs potentiation) of the GABA-mediated effects. While synaptic inhibition was mediated by GABAA receptors, potentiation involved astrocyte GABAB receptors, astrocytic glutamate release, and presynaptic metabotropic glutamate receptors. Using conditional astrocyte-specific GABAB receptor (Gabbr1) knockout mice, we confirmed the glial source of the interneuron-induced potentiation, and demonstrated the involvement of astrocytes in hippocampal theta and gamma oscillations in vivo. Therefore, astrocytes decode interneuron activity and transform inhibitory into excitatory signals, contributing to the emergence of novel network properties resulting from the interneuron-astrocyte interplay.


2003 ◽  
Vol 89 (6) ◽  
pp. 3155-3167 ◽  
Author(s):  
Héctor Romo-Parra ◽  
Carmen Vivar ◽  
Jasmín Maqueda ◽  
Miguel A. Morales ◽  
Rafael Gutiérrez

The granule cells of the dentate gyrus (DG) are considered to be glutamatergic, but they contain glutamic acid decarboxylase, γ-amino butyric acid (GABA), and the vesicular GABA transporter mRNA. Their expression is regulated in an activity-dependent manner and coincides with the appearance of GABAergic transmission from the mossy fibers (MF) to pyramidal cells in area CA3. These data support the hypothesis that MF are able to release glutamate and GABA. Following the principle that a given neuron releases the same neurotransmitter(s) onto all its targets, we here demonstrate the emergence, after a generalized convulsive seizure, of MF GABAergic signaling sensitive to activation mGluR-III onto pyramidal cells and interneurons of CA3. Despite this, excitation overrides inhibition in interneurons, preventing disinhibition. Furthermore, on blockade of GABA and glutamate ionotropic receptors, an M1-cholinergic depolarizing signal is also revealed in both targets, which postsynaptically modulates the glutamatergic and GABAergic fast neurotransmission. The emergence of these nonglutamatergic signals depends on protein synthesis. In contrast to cholinergic responses evoked by associational/commissural fibers activation, cholinergic transmission evoked by DG stimulation is only observed after seizures and is strongly depressed by the activation of mGluR-II, whereas both are depressed by M2-AChR activation. With immunohistological experiments, we show that this cholinergic pathway runs parallel to the MF. Thus seizures compromise a delicate balance of excitation and inhibition, on which a complex interaction of different neurotransmitters emerges to counteract excitation at pre- and postsynaptic sites. Particularly, MF GABAergic inhibition emerges to exert an overall inhibitory action on CA3.


Sign in / Sign up

Export Citation Format

Share Document