Mathematical model of an identified stomatogastric ganglion neuron

1992 ◽  
Vol 67 (2) ◽  
pp. 332-340 ◽  
Author(s):  
F. Buchholtz ◽  
J. Golowasch ◽  
I. R. Epstein ◽  
E. Marder

1. The ionic currents in the lateral pyloric (LP) cell of the stomatogastric ganglion (STG) described in the preceding paper of the rock crab Cancer borealis were fit with a set of differential equations that describe their voltage, time, and Ca2+ dependence. The voltage-dependent currents modeled are a delayed rectifier-like current, id; a Ca(2+)-activated outward current, io(Ca); a transient A-like current, iA; a Ca2+ current, iCa; an inwardly rectifying current, ih; and a fast tetrodotoxin (TTX)-sensitive Na+ current, iNa. 2. A single-compartment, isopotential model of the LP cell was constructed from the six voltage-dependent currents, a voltage-independent leak current il, a Ca2+ buffering system, and the membrane capacitance. 3. The behavior of the model LP neuron was compared with that of the biological neuron by simulating physiological experiments carried out in both voltage-clamp and current-clamp modes. The model and biological neurons show similar action-potential shapes, durations, steady-state current-voltage (I-V) curves, and respond to injected current in a comparable way.

2010 ◽  
Vol 299 (5) ◽  
pp. C1180-C1194 ◽  
Author(s):  
R. J. Large ◽  
M. A. Hollywood ◽  
G. P. Sergeant ◽  
K. D. Thornbury ◽  
S. Bourke ◽  
...  

Hyaluronan, a joint lubricant and regulator of synovial fluid content, is secreted by fibroblast-like synoviocytes lining the joint cavity, and secretion is greatly stimulated by Ca2+-dependent protein kinase C. This study aimed to define synoviocyte membrane currents and channels that may influence synoviocyte Ca2+ dynamics. Resting membrane potential ranged from −30 mV to −66 mV (mean −45 ± 8.60 mV, n = 40). Input resistance ranged from 0.54 GΩ to 2.6 GΩ (mean 1.28 ± 0.57 GΩ; ν = 33). Cell capacitance averaged 97.97 ± 5.93 pF. Voltage clamp using Cs+ pipette solution yielded a transient inward current that disappeared in Ca2+-free solutions and was blocked by 1 μM nifedipine, indicating an L-type calcium current. The current was increased fourfold by the calcium channel activator FPL 64176 (300 nM). Using K+ pipette solution, depolarizing steps positive to −40 mV evoked an outward current that showed kinetics and voltage dependence of activation and inactivation typical of the delayed rectifier potassium current. This was blocked by the nonspecific delayed rectifier blocker 4-aminopyridine. The synoviocytes expressed mRNA for four Kv1 subtypes (Kv1.1, Kv1.4, Kv1.5, and Kv1.6). Correolide (1 μM), margatoxin (100 nM), and α-dendrotoxin block these Kv1 subtypes, and all of these drugs significantly reduced synoviocyte outward current. The current was blocked most effectively by 50 nM κ-dendrotoxin, which is specific for channels containing a Kv1.1 subunit, indicating that Kv1.1 is critical, either as a homomultimeric channel or as a component of a heteromultimeric Kv1 channel. When 50 nM κ-dendrotoxin was added to current-clamped synoviocytes, the cells depolarized by >20 mV and this was accompanied by an increase in intracellular calcium concentration. Similarly, depolarization of the cells with high external potassium solution caused an increase in intracellular calcium, and this effect was greatly reduced by 1 μM nifedipine. In conclusion, fibroblast-like synoviocytes cultured from the inner synovium of the rabbit exhibit voltage-dependent inward and outward currents, including Ca2+ currents. They thus express ion channels regulating membrane Ca2+ permeability and electrochemical gradient. Since Ca2+-dependent kinases are major regulators of synovial hyaluronan secretion, the synoviocyte ion channels are likely to be important in the regulation of hyaluronan secretion.


1992 ◽  
Vol 67 (2) ◽  
pp. 318-331 ◽  
Author(s):  
J. Golowasch ◽  
E. Marder

1. The lateral pyloric (LP) neuron is an important component of the network that generates the pyloric rhythm of the stomatogastric ganglion (STG) and is a direct target of many modulatory inputs to the STG. Our aim in this and the subsequent two papers is to describe the conductances present in this cell and to understand the role these conductances play in shaping the activity of the neuron. 2. LP neurons were studied in two-electrode voltage clamp (TEVC) in a saline solution containing tetrodotoxin (TTX) and picrotoxin (PTX) to isolate them pharmacologically from presynaptic inputs. 3. We identified six voltage-dependent ionic conductances. These include three outward currents that resemble a delayed rectifier current, a Ca(2+)-activated K+ current and an A-current similar to those seen in many other preparations. LP neurons show three inward currents, a fast TTX-sensitive current, a hyperpolarization-activated inward current, and a Ca2+ current.


2000 ◽  
Vol 278 (3) ◽  
pp. H806-H817 ◽  
Author(s):  
Gary A. Gintant

Although inactivation of the rapidly activating delayed rectifier current ( I Kr) limits outward current on depolarization, the role of I Kr (and recovery from inactivation) during repolarization is uncertain. To characterize I Krduring ventricular repolarization (and compare with the inward rectifier current, I K1), voltage-clamp waveforms simulating the action potential were applied to canine ventricular, atrial, and Purkinje myocytes. In ventricular myocytes, I Kr was minimal at plateau potentials but transiently increased during repolarizing ramps. The I Kr transient was unaffected by repolarization rate and maximal after 150-ms depolarizations (+25 mV). Action potential clamps revealed the I Kr transient terminating the plateau. Although peak I Kr transient density was relatively uniform among myocytes, potentials characterizing the peak transients were widely dispersed. In contrast, peak inward rectifier current ( I K1) density during repolarization was dispersed, whereas potentials characterizing I K1 defined a narrower (more negative) voltage range. In summary, rapidly activating I Kr provides a delayed voltage-dependent (and functionally time-independent) outward transient during ventricular repolarization, consistent with rapid recovery from inactivation. The heterogeneous voltage dependence of I Kr provides a novel means for modulating the contribution of this current during repolarization.


2000 ◽  
Vol 84 (4) ◽  
pp. 2026-2034 ◽  
Author(s):  
Fumihito Saitow ◽  
Shiro Konishi

In the preceding paper, we showed that norepinephrine (NE) enhances the spontaneous spike firings in cerebellar interneurons, basket cells (BCs), resulting in an increase in the frequency of BC-spike-triggered inhibitory postsynaptic currents (IPSCs) in Purkinje cells (PCs), and that the effects of NE on GABAergic BCs are mediated by β2-adrenergic receptors. This study aimed to further examine the ionic mechanism underlying the β-adrenoceptor-mediated facilitation of GABAergic transmission at the BC-PC synapses. Using cerebellar slices obtained from 15- to 21-day-old rats and whole cell recordings, we investigated ionic currents in the BCs and the effects of the β-agonist isoproterenol (ISP) as well as forskolin on the BC excitability. Hyperpolarizing voltage steps from a holding potential of −50 mV elicited a hyperpolarization-activated inward current, I h, in the BC. This current exhibited voltage-dependent activation that was accelerated by strong hyperpolarization, displaying two time constants, 84 ± 6 and 310 ± 40 ms, at −100 mV, and was inhibited by 20 μM ZD7288. ISP and forskolin, both at 20 μM, enhanced I h by shifting the activation curve by 5.9 and 9.3 mV toward positive voltages, respectively. Under the current-clamp mode, ISP produced a depolarization of 7 ± 3 mV in BCs and reduced their input resistance to 74 ± 6%. ISP and a cAMP analogue, Rp-cAMP-S, increased the frequency of spontaneous spikes recorded from BCs using the cell-attached mode. The I h inhibitor ZD7288 decreased the BC spike frequency and abolished the ISP-induced increase in spike discharges. The results suggest that NE depolarizes the BCs through β-adrenoceptor-mediated cAMP formation linking it to activation of I h, which is, at least in part, involved in noradrenergic afferent-mediated facilitation of GABAergic synaptic activity at BC-PC connections in the rat cerebellum.


1992 ◽  
Vol 262 (1) ◽  
pp. C75-C83 ◽  
Author(s):  
C. H. Follmer ◽  
N. J. Lodge ◽  
C. A. Cullinan ◽  
T. J. Colatsky

The effects of cadmium on the delayed outward potassium current (IK) were investigated in isolated cat ventricular myocytes using the single suction pipette voltage-clamp technique. IK activation was examined using peak tail currents elicited after 750-ms voltage-clamp steps to selected membrane potentials from a holding potential of -40 mV. In the presence of Cd2+ (0.2 mM), peak tail currents increased from a control value of 85 +/- 12 to 125 +/- 18 pA (n = 4). Activation curves constructed from the average peak tail-current measurements in all experiments showed that Cd2+ shifted the voltage dependence of activation to more positive potentials by 16.4 +/- 2.0 mV and increased the slope factor of the activation curve from 6.1 +/- 0.2 to 6.9 +/- 0.2 mV. In the absence of Cd2+, increases in holding potential from -30 to -70 mV had no effect on the magnitude of the peak tail currents, suggesting that the Cd(2+)-induced increase was not the result of a voltage-dependent increase in the number of available K+ channels at the holding potential. Slow voltage ramps from -70 to +70 mV revealed that Cd2+ increased the outward current at membrane potentials positive to +20 mV and shifted the voltage range in which IK inwardly rectified to more positive potentials. The fully activated current-voltage relationship was also shifted to more positive potentials by Cd2+. Cd2+ did not alter channel selectivity for K+.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 273 (1) ◽  
pp. H324-H332 ◽  
Author(s):  
A. Stadnicka ◽  
Z. J. Bosnjak ◽  
J. P. Kampine ◽  
W. M. Kwok

The effects of sevoflurane on the inward rectifier potassium current (IKIR) were examined in guinea pig ventricular cardiomyocytes using the whole cell patch-clamp methodology. Sevoflurane had a unique dual effect on the steady-state current amplitude, producing a reversible, concentration- and voltage-dependent block of the inward current at potentials negative to the potassium equilibrium potential (EK) but enhancing the outward current positive to EK. Accordingly, the steady-state conductance negative to EK was reduced by sevoflurane, but conductance positive to EK was increased. The chord conductance-voltage relationship showed depolarizing shifts at 0.7, 1.3, and 1.6 mM sevoflurane. When the myocytes were dialyzed with 10 mM Mg2+, but not with 1.0 mM Mg2+, sevoflurane further slowed current activation kinetics. With 10 mM intracellular Mg2+, the outward current enhancement by sevoflurane and the associated shifts in half-activation potential were abolished. Polyamines abolished all effects of sevoflurane on IKIR. With the use of the Woodhull model for voltage-dependent block, we determined the sevoflurane interaction site with the inward rectifier potassium channel to be at an electrical distance of 0.2 from the extracellular side.


1999 ◽  
Vol 276 (4) ◽  
pp. C923-C929 ◽  
Author(s):  
Adam Rich ◽  
Gianrico Farrugia ◽  
James L. Rae

The effects of melatonin on ionic conductances in a cultured mouse lens epithelial cell line (α-TN4) and in cultured human trabecular meshwork (HTM) cells were measured using the amphotericin perforated patch whole cell voltage-clamp technique. Melatonin stimulated a voltage-dependent Na+-selective current in lens epithelial cells and trabecular meshwork cells. The effects of melatonin were observed at 50 pM and were maximal at 100 μM. Melatonin enhanced activation and inactivation kinetics, but no change was observed in the voltage dependence of activation. The results are consistent with an increase in the total number of ion channels available for activation by membrane depolarization. Melatonin was also found to stimulate a K+-selective current at high doses (1 mM). Melatonin did not affect the inwardly rectifying K+ current or the delayed rectifier type K+ current that has been described in cultured mouse lens epithelial cells. The results show that melatonin specifically stimulated the TTX-insensitive voltage-dependent Na+ current by an apparently novel mechanism.


2002 ◽  
Vol 88 (6) ◽  
pp. 3386-3397 ◽  
Author(s):  
Dan Rokni ◽  
Binyamin Hochner

The octopus arm provides a unique model for neuromuscular systems of flexible appendages. We previously reported the electrical compactness of the arm muscle cells and their rich excitable properties ranging from fast oscillations to overshooting action potentials. Here we characterize the voltage-activated ionic currents in the muscle cell membrane. We found three depolarization-activated ionic currents: 1) a high-voltage-activated L-type Ca2+ current, which began activating at approximately −35 mV, was eliminated when Ca2+ was substituted by Mg2+, was blocked by nifedipine, and showed Ca2+-dependent inactivation. This current had very rapid activation kinetics (peaked within milliseconds) and slow inactivation kinetics (τ in the order of 50 ms). 2) A delayed rectifier K+ current that was totally blocked by 10 mM TEA and partially blocked by 10 mM 4-aminopyridine (4AP). This current exhibited relatively slow activation kinetics (τ in the order of 15 ms) and inactivated only partially with a time constant of ∼150 ms. And 3) a transient A-type K+ current that was totally blocked by 10 mM 4AP and was partially blocked by 10 mM TEA. This current exhibited very fast activation kinetics (peaked within milliseconds) and inactivated with a time constant in the order of 60 ms. Inactivation of the A-type current was almost complete at −40 mV. No voltage-dependent Na+ current was found in these cells. The octopus arm muscle cells generate fast (∼3 ms) overshooting spikes in physiological conditions that are carried by a slowly inactivating L-type Ca2+ current.


1986 ◽  
Vol 88 (6) ◽  
pp. 777-798 ◽  
Author(s):  
J R Hume ◽  
W Giles ◽  
K Robinson ◽  
E F Shibata ◽  
R D Nathan ◽  
...  

Individual myocytes were isolated from bullfrog atrium by enzymatic and mechanical dispersion, and a one-microelectrode voltage clamp was used to record the slow outward K+ currents. In normal [K+]o (2.5 mM), the slow outward current tails reverse between -95 and -100 mV. This finding, and the observed 51-mV shift of Erev/10-fold change in [K+]o, strongly suggest that the "delayed rectifier" in bullfrog atrial cells is a K+ current. This current, IK, plays an important role in initiating repolarization, and it is distinct from the quasi-instantaneous, inwardly rectifying background current, IK. In atrial cells, IK does not exhibit inactivation, and very long depolarizing clamp steps (20 s) can be applied without producing extracellular K+ accumulation. The possibility of [K+]o accumulation contributing to these slow outward current changes was assessed by (a) comparing reversal potentials measured after short (2 s) and very long (15 s) activating prepulses, and (b) studying the kinetics of IK at various holding potentials and after systematically altering [K+]o. In the absence of [K+]o accumulation, the steady state activation curve (n infinity) and fully activated current-voltage (I-V) relation can be obtained directly. The threshold of the n infinity curve is near -50 mV, and it approaches a maximum at +20 mV; the half-activation point is approximately -16 mV. The fully activated I-V curve of IK is approximately linear in the range -40 to +30 mV. Semilog plots of the current tails show that each tail is a single-exponential function, which suggests that only one Hodgkin-Huxley conductance underlies this slow outward current. Quantitative analysis of the time course of onset of IK and of the corresponding envelope of tails demonstrate that the activation variable, n, must be raised to the second power to fit the sigmoid onset accurately. The voltage dependence of the kinetics of IK was studied by recording and curve-fitting activating and deactivating (tail) currents. The resulting 1/tau n curve is U-shaped and somewhat asymmetric; IK exhibits strong voltage dependence in the diastolic range of potentials. Changes in the [Ca2+]o in the superfusing Ringer's, and/or addition of La3+ to block the transmembrane Ca2+ current, show that the time course and magnitude of IK are not significantly modulated by transmembrane Ca2+ movements, i.e., by ICa. These experimentally measured voltage- and time-dependent descriptors of IK strongly suggest an important functional role for IK in atrial tissue: it initiates repolarization and can be an important determinant of rate-induced changes in action potential duration.


2004 ◽  
Vol 82 (11) ◽  
pp. 1006-1017 ◽  
Author(s):  
Anne Marie F Salapatek ◽  
Junzhi Ji ◽  
Ahmad Muinuddin ◽  
Nicholas E Diamant

We hypothesized that regional differences in electrophysiological properties exist within the musculature of the feline lower esophageal sphincter (LES) and that they may potentially contribute to functional asymmetry within the LES. Freshly isolated esophageal smooth muscle cells (SMCs) from the circular muscle and sling regions within the LES were studied under a patch clamp. The resting membrane potential (RMP) of the circular SMCs was significantly more depolarized than was the RMP of the sling SMCs, resulting from a higher Na+and Cl–permeability in circular muscle than in sling muscle. Large conductance Ca2+-activated K+(BKCa) set the RMP at both levels, since specific BKCainhibitors caused depolarization; however, BKCadensity was greatest in the circular region. A significant portion of the outward current was due to non-BKCa, especially in sling muscle, and likely delayed rectifier K+channels (KDR). There was a large reduction in outward current with 4-aminopyridine (4-AP) in sling muscle, while BKCablockers had a limited effect on the voltage-activated outward current in sling muscle. Differences in BKCa:KDRchannel ratios were also manifest by a leftward shift in the voltage-dependent activation curve in circular cells compared to sling cells. The electrophysiological differences seen between the circular and sling muscles provide a basis for their different contributions to LES activities such as resting tone and neurotransmitter responsiveness, and in turn could impart asymmetric drug responses and provide specific therapeutic targets.Key words: esophagus, esophageal motility, gastroesophageal reflux, KCa, KDR, LES tone.


Sign in / Sign up

Export Citation Format

Share Document