Excitability Increase Induced by β-Adrenergic Receptor-Mediated Activation of Hyperpolarization-Activated Cation Channels in Rat Cerebellar Basket Cells

2000 ◽  
Vol 84 (4) ◽  
pp. 2026-2034 ◽  
Author(s):  
Fumihito Saitow ◽  
Shiro Konishi

In the preceding paper, we showed that norepinephrine (NE) enhances the spontaneous spike firings in cerebellar interneurons, basket cells (BCs), resulting in an increase in the frequency of BC-spike-triggered inhibitory postsynaptic currents (IPSCs) in Purkinje cells (PCs), and that the effects of NE on GABAergic BCs are mediated by β2-adrenergic receptors. This study aimed to further examine the ionic mechanism underlying the β-adrenoceptor-mediated facilitation of GABAergic transmission at the BC-PC synapses. Using cerebellar slices obtained from 15- to 21-day-old rats and whole cell recordings, we investigated ionic currents in the BCs and the effects of the β-agonist isoproterenol (ISP) as well as forskolin on the BC excitability. Hyperpolarizing voltage steps from a holding potential of −50 mV elicited a hyperpolarization-activated inward current, I h, in the BC. This current exhibited voltage-dependent activation that was accelerated by strong hyperpolarization, displaying two time constants, 84 ± 6 and 310 ± 40 ms, at −100 mV, and was inhibited by 20 μM ZD7288. ISP and forskolin, both at 20 μM, enhanced I h by shifting the activation curve by 5.9 and 9.3 mV toward positive voltages, respectively. Under the current-clamp mode, ISP produced a depolarization of 7 ± 3 mV in BCs and reduced their input resistance to 74 ± 6%. ISP and a cAMP analogue, Rp-cAMP-S, increased the frequency of spontaneous spikes recorded from BCs using the cell-attached mode. The I h inhibitor ZD7288 decreased the BC spike frequency and abolished the ISP-induced increase in spike discharges. The results suggest that NE depolarizes the BCs through β-adrenoceptor-mediated cAMP formation linking it to activation of I h, which is, at least in part, involved in noradrenergic afferent-mediated facilitation of GABAergic synaptic activity at BC-PC connections in the rat cerebellum.

2002 ◽  
Vol 283 (1) ◽  
pp. R115-R129 ◽  
Author(s):  
Fang-Li Zhao ◽  
Shao-Gang Lu ◽  
Scott Herness

Although the numerous stimuli representing the taste quality of bitterness are known to be transduced through multiple mechanisms, recent studies have suggested an unpredicted complexity of the transduction pathways for individual bitter stimuli. To investigate this notion more thoroughly, a single prototypic bitter stimulus, caffeine, was studied by using patch-clamp and ratiometric imaging techniques on dissociated rat taste receptor cells. At behaviorally relevant concentrations, caffeine produced strong inhibition of outwardly and inwardly rectifying potassium currents. Caffeine additionally inhibited calcium current, produced a weaker inhibition of sodium current, and was without effect on chloride current. Consistent with its effects on voltage-dependent currents, caffeine caused a broadening of the action potential and an increase of the input resistance. Caffeine was an effective stimulus for elevation of intracellular calcium. This elevation was concentration dependent, independent of extracellular calcium or ryanodine, and dependent on intracellular stores as evidenced by thapsigargin treatment. These dual actions on voltage-activated ionic currents and intracellular calcium levels suggest that a single taste stimulus, caffeine, utilizes multiple transduction mechanisms.


2010 ◽  
Vol 299 (5) ◽  
pp. C1180-C1194 ◽  
Author(s):  
R. J. Large ◽  
M. A. Hollywood ◽  
G. P. Sergeant ◽  
K. D. Thornbury ◽  
S. Bourke ◽  
...  

Hyaluronan, a joint lubricant and regulator of synovial fluid content, is secreted by fibroblast-like synoviocytes lining the joint cavity, and secretion is greatly stimulated by Ca2+-dependent protein kinase C. This study aimed to define synoviocyte membrane currents and channels that may influence synoviocyte Ca2+ dynamics. Resting membrane potential ranged from −30 mV to −66 mV (mean −45 ± 8.60 mV, n = 40). Input resistance ranged from 0.54 GΩ to 2.6 GΩ (mean 1.28 ± 0.57 GΩ; ν = 33). Cell capacitance averaged 97.97 ± 5.93 pF. Voltage clamp using Cs+ pipette solution yielded a transient inward current that disappeared in Ca2+-free solutions and was blocked by 1 μM nifedipine, indicating an L-type calcium current. The current was increased fourfold by the calcium channel activator FPL 64176 (300 nM). Using K+ pipette solution, depolarizing steps positive to −40 mV evoked an outward current that showed kinetics and voltage dependence of activation and inactivation typical of the delayed rectifier potassium current. This was blocked by the nonspecific delayed rectifier blocker 4-aminopyridine. The synoviocytes expressed mRNA for four Kv1 subtypes (Kv1.1, Kv1.4, Kv1.5, and Kv1.6). Correolide (1 μM), margatoxin (100 nM), and α-dendrotoxin block these Kv1 subtypes, and all of these drugs significantly reduced synoviocyte outward current. The current was blocked most effectively by 50 nM κ-dendrotoxin, which is specific for channels containing a Kv1.1 subunit, indicating that Kv1.1 is critical, either as a homomultimeric channel or as a component of a heteromultimeric Kv1 channel. When 50 nM κ-dendrotoxin was added to current-clamped synoviocytes, the cells depolarized by >20 mV and this was accompanied by an increase in intracellular calcium concentration. Similarly, depolarization of the cells with high external potassium solution caused an increase in intracellular calcium, and this effect was greatly reduced by 1 μM nifedipine. In conclusion, fibroblast-like synoviocytes cultured from the inner synovium of the rabbit exhibit voltage-dependent inward and outward currents, including Ca2+ currents. They thus express ion channels regulating membrane Ca2+ permeability and electrochemical gradient. Since Ca2+-dependent kinases are major regulators of synovial hyaluronan secretion, the synoviocyte ion channels are likely to be important in the regulation of hyaluronan secretion.


2016 ◽  
Vol 38 (5) ◽  
pp. 1727-1742 ◽  
Author(s):  
Poh-Shiow Yeh ◽  
Shyh-Jong Wu ◽  
Te-Yu Hung ◽  
Yan-Ming Huang ◽  
Chia-Wei Hsu ◽  
...  

Background: Temozolomide (TMZ), an oral alkylator of the imidazotetrazine family, is used to treat glioma. Whether this drug has any ionic effects in glioma cells remains largely unclear. Methods: With the aid of patch-clamp technology, we investigated the effects of TMZ on the ionic currents in U373 glioma cells. The mRNA expression of KCNN4 (KCa3.1) in U373 glioma cells and TMZ's effect on K+ currents in these KCNN4 siRNA-transfected U373 cells were investigated. Results: In whole-cell recordings, TMZ decreased the amplitude of voltage-dependent K+ currents (IK) in U373 cells. TMZ-induced IK inhibition was reversed by ionomycin or 1-ethyl-2-benzimidazolinone (1-EBIO). In cell-attached configuration, TMZ concentration-dependently reduced the activity of intermediate-conductance Ca2+-activated K+ (IKCa) channels with an IC50 value of 9.2 µM. Chlorzoxazone or 1-EBIO counteracted the TMZ-induced inhibition of IKCa channels. Although TMZ was unable to modify single-channel conductance, its inhibition of IKCa channels was weakly voltage-dependent and accompanied by a significant prolongation in the slow component of mean closed time. However, neitherlarge-conductance Ca2+-activated (BKCa) nor inwardly rectifying K+ (Kir) channels were affected by TMZ. In current-clamp mode, TMZ depolarized the cell membrane and 1-EBIO reversed TMZ-induced depolarization. TMZ had no effect on IK in KCNN4 siRNA-transfected U373 cells. Conclusion: In addition to the DNA damage it does, its inhibitory effect on IKCa channels accompanied by membrane depolarization could be an important mechanism underlying TMZ-induced antineoplastic actions.


1992 ◽  
Vol 67 (2) ◽  
pp. 332-340 ◽  
Author(s):  
F. Buchholtz ◽  
J. Golowasch ◽  
I. R. Epstein ◽  
E. Marder

1. The ionic currents in the lateral pyloric (LP) cell of the stomatogastric ganglion (STG) described in the preceding paper of the rock crab Cancer borealis were fit with a set of differential equations that describe their voltage, time, and Ca2+ dependence. The voltage-dependent currents modeled are a delayed rectifier-like current, id; a Ca(2+)-activated outward current, io(Ca); a transient A-like current, iA; a Ca2+ current, iCa; an inwardly rectifying current, ih; and a fast tetrodotoxin (TTX)-sensitive Na+ current, iNa. 2. A single-compartment, isopotential model of the LP cell was constructed from the six voltage-dependent currents, a voltage-independent leak current il, a Ca2+ buffering system, and the membrane capacitance. 3. The behavior of the model LP neuron was compared with that of the biological neuron by simulating physiological experiments carried out in both voltage-clamp and current-clamp modes. The model and biological neurons show similar action-potential shapes, durations, steady-state current-voltage (I-V) curves, and respond to injected current in a comparable way.


1990 ◽  
Vol 259 (3) ◽  
pp. C402-C408 ◽  
Author(s):  
E. P. Burke ◽  
K. M. Sanders

Previous studies have suggested that the membrane potential gradient across the circular muscle layer of the canine proximal colon is due to a gradient in the contribution of the Na(+)-K(+)-ATPase. Cells at the submucosal border generate approximately 35 mV of pump potential, whereas at the myenteric border the pump contributes very little to resting potential. Results from experiments in intact muscles in which the pump is blocked are somewhat difficult to interpret because of possible effects of pump inhibitors on membrane conductances. Therefore, we studied isolated colonic myocytes to test the effects of ouabain on passive membrane properties and voltage-dependent currents. Ouabain (10(-5) M) depolarized cells and decreased input resistance from 0.487 +/- 0.060 to 0.292 +/- 0.040 G omega. The decrease in resistance was attributed to an increase in K+ conductance. Studies were also performed to measure the ouabain-dependent current. At 37 degrees C, in cells dialyzed with 19 mM intracellular Na+ concentration [( Na+]i), ouabain caused an inward current averaging 71.06 +/- 7.49 pA, which was attributed to blockade of pump current. At 24 degrees C or in cells dialyzed with low [Na+]i (11 mM), ouabain caused little change in holding current. With the input resistance of colonic cells, pump current appears capable of generating at least 35 mV. Thus an electrogenic Na+ pump could contribute significantly to membrane potential.


2002 ◽  
Vol 88 (4) ◽  
pp. 1655-1663 ◽  
Author(s):  
Ren-Qi Huang ◽  
Glenn H. Dillon

The hypothalamus influences a number of autonomic functions. The activity of hypothalamic neurons is modulated in part by release of the inhibitory neurotransmitter GABA onto these neurons. GABAA receptors are formed from a number of distinct subunits, designated α, β, γ, δ, ε, and θ, many of which have multiple isoforms. Little data exist, however, on the functional characteristics of the GABAA receptors present on hypothalamic neurons. To gain insight into which GABAA receptor subunits are functionally expressed in the hypothalamus, we used an array of pharmacologic assessments. Whole cell recordings were made from thin hypothalamic slices obtained from 1- to 14-day-old rats. GABAA receptor-mediated currents were detected in all neurons tested and had an average EC50 of 20 ± 1.6 μM. Hypothalamic GABAA receptors were modulated by diazepam (EC50 = 0.060 μM), zolpidem (EC50 = 0.19 μM), loreclezole (EC50 = 4.4 μM), methyl-6,7-dimethoxy-4-ethyl-β-carboline (EC50= 7.7 μM), and 5α-pregnan-3α-hydroxy-20-one (3α-OH-DHP). Conversely, these receptors were inhibited by Zn2+ (IC50 = 70.5 μM), dehydroepiandrosterone sulfate (IC50 = 16.7 μM), and picrotoxin (IC50 = 2.6 μM). The α4/6-selective antagonist furosemide (10–1,000 μM) was ineffective in all hypothalamic neurons tested. The results of our pharmacological analysis suggest that hypothalamic neurons express functional GABAA receptor subtypes that incorporate α1 and/or α2 subunits, β2 and/or β3 subunits, and the γ2 subunit. Our results suggest receptors expressing α3–α6, β1, γ1, and δ, if present, represent a minor component of functional hypothalamic GABAA receptors.


2000 ◽  
Vol 83 (2) ◽  
pp. 1010-1018 ◽  
Author(s):  
Gabriela J. Greif ◽  
Deborah L. Sodickson ◽  
Bruce P. Bean ◽  
Eva J. Neer ◽  
Ulrike Mende

To examine the role of Go in modulation of ion channels by neurotransmitter receptors, we characterized modulation of ionic currents in hippocampal CA3 neurons from mice lacking both isoforms of Gαo. In CA3 neurons from Gαo −/− mice, 2-chloro-adenosine and the GABAB-receptor agonist baclofen activated inwardly rectifying K+ currents and inhibited voltage-dependent Ca2+ currents just as effectively as in Gαo +/+ littermates. However, the kinetics of transmitter action were dramatically altered in Gαo −/− mice in that recovery on washout of agonist was much slower. For example, recovery from 2-chloro-adenosine inhibition of calcium current was more than fourfold slower in neurons from Gαo −/− mice [time constant of 12.0 ± 0.8 (SE) s] than in neurons from Gαo +/+ mice (time constant of 2.6 ± 0.2 s). Recovery from baclofen effects was affected similarly. In neurons from control mice, effects of both baclofen and 2-chloro-adenosine on Ca2+ currents and K+currents were abolished by brief exposure to external N-ethyl-maleimide (NEM). In neurons lacking Gαo, some inhibition of Ca2+ currents by baclofen remained after NEM treatment, whereas baclofen activation of K+ currents and both effects of 2-chloro-adenosine were abolished. These results show that modulation of Ca2+ and K+ currents by G protein-coupled receptors in hippocampal neurons does not have an absolute requirement for Gαo. However, modulation is changed in the absence of Gαo in having much slower recovery kinetics. A likely possibility is that the very abundant Gαo is normally used but, when absent, can readily be replaced by G proteins with different properties.


1985 ◽  
Vol 86 (5) ◽  
pp. 739-762 ◽  
Author(s):  
G K Wang ◽  
G Strichartz

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.


1996 ◽  
Vol 75 (6) ◽  
pp. 2654-2657 ◽  
Author(s):  
W. Jarolimek ◽  
H. Brunner ◽  
A. Lewen ◽  
U. Misgeld

1. Spontaneous synaptic activity in networks formed by dissociated neurons from embryonic rat midbrain was analyzed in tight seal whole cell recordings. 2. Application of furosemide (0.5 mM) to the cell and its surrounding area increased the frequency of spontaneous synaptic currents. Incubation of the culture with furosemide resulted in “rhythmic” burst activity. 3. Furosemide (0.1-0.5 mM) changed equilibrium potentials of inhibitory postsynaptic currents, gamma-aminobutyric acid-A (GABAA) or glycine receptor-mediated Cl- currents by a blockade of Cl(-)-outward transport. Furosemide did not alter the slope conductance of GABAA receptor-mediated currents. Membrane conductance and cell excitability were also unaffected. 4. We conclude that furosemide locked the activity of the network in “burst activity” mode through impairment of inhibition resulting from the disturbance of Cl- homeostasis.


2001 ◽  
Vol 86 (6) ◽  
pp. 2998-3010 ◽  
Author(s):  
Nace L. Golding ◽  
William L. Kath ◽  
Nelson Spruston

In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 μm from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 μm from the soma, action potentials in most cells backpropagated either strongly (26–42% attenuation; n = 9/20) or weakly (71–87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300–410 μm from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.


Sign in / Sign up

Export Citation Format

Share Document