scholarly journals GABAA Mediated Afterdepolarization in Pyramidal Neurons From Rat Neocortex

1997 ◽  
Vol 77 (2) ◽  
pp. 1039-1045 ◽  
Author(s):  
R. Cerne ◽  
W. J. Spain

Cerne, R. and W. J. Spain. A GABAA mediated afterdepolarization in pyramidal neurons from rat neocortex. J. Neurophysiol. 77: 1039–1045, 1997. We report a novel slow afterdepolarization (sADP) in layer V pyramidal neurons when brain slices from somatosensory cortex are perfused with γ-aminobutyric acid (GABA). Whole cell recordings were made from visually identified neurons in slices from 3- to 5-wk-old rats. The firing of action potentials at 100 Hz for 1 s, evoked by a train of brief current pulses, typically is followed by a slow afterhyperpolarization (sAHP). When GABA (1 mM) was applied to the perfusate, the sAHP was replaced by a sADP of ≈18 mV in amplitude, which on average lasted for 26 s. The sADP was not evoked or terminated as an all-or-none event: it grew in amplitude and duration as the number of evoked action potentials was increased; and when the sADP was interrupted with hyperpolarizing current steps, its amplitude and duration were graded in a time- and voltage-dependent manner. The sADP did not depend on Ca2+ entry into the cell: it could be evoked when bath Ca2+ was replaced by Mn2+ or in neurons dialyzed with 20 mM bis-( o-aminophenoxy)- N,N,N′,N′-tetraacetic acid. We hypothesized that the sADP was generated predominantly in the dendrites because it was associated with the firing of small-amplitude action potentials that continued after the somatic membrane potential was repolarized to −70 mV by steady current injection. We tested this hypothesis by evoking the sADP in neurons with surgically amputated apical dendrites. In those neurons, the average duration of the sADP was 78% shorter than in neurons with an intact apical dendrite and there were no associated small action potentials. The sADP also was evoked by muscimol, but not by baclofen, and was blocked by bicuculline or picrotoxin but not by CGP 35348, indicating that it is mediated through the activation of GABAA receptors. Our results suggest that intense activity in the presence of GABA results in a long-lasting enhancement of excitability in the apical dendrite that in turn could lead to amplification of distal excitatory synaptic potentials.

1998 ◽  
Vol 79 (3) ◽  
pp. 1587-1591 ◽  
Author(s):  
György Buzsáki ◽  
Adam Kandel

Buzsáki, György and Adam Kandel. Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. J. Neurophysiol. 79: 1587–1591, 1998. The invasion of fast (Na+) spikes from the soma into dendrites was studied in single pyramidal cells of the sensorimotor cortex by simultaneous extracellular recordings of the somatic and dendritic action potentials in freely behaving rats. Field potentials and unit activity were monitored with multiple-site silicon probes along trajectories perpendicular to the cortical layers at spatial intervals of 100 μm. Dendritic action potentials of individual layer V pyramidal neurons could be recorded up to 400 μm from the cell body. Action potentials were initiated at the somatic recording site and traveled back to the apical dendrite at a velocity of 0.67 m/s. Current source density analysis of the action potential revealed time shifted dipoles, supporting the view of active spike propagation in dendrites. The presented method is suitable for exploring the conditions affecting the somadendritic propagation action of potentials in the behaving animal.


2001 ◽  
Vol 85 (2) ◽  
pp. 855-868 ◽  
Author(s):  
Thomas Berger ◽  
Matthew E. Larkum ◽  
Hans-R. Lüscher

Despite the wealth of recent research on active signal propagation along the dendrites of layer V neocortical pyramidal neurons, there is still little known regarding the traffic of subthreshold synaptic signals. We present a study using three simultaneous whole cell recordings on the apical dendrites of these cells in acute rat brain slices to examine the spread and attenuation of spontaneous excitatory postsynaptic potentials (sEPSPs). Equal current injections at each of a pair of sites separated by ∼500 μm on the apical dendrite resulted in equal voltage transients at the other site (“reciprocity”), thus disclosing linear behavior of the neuron. The mean apparent “length constants” of the apical dendrite were 273 and 446 μm for somatopetal and somatofugal sEPSPs, respectively. Trains of artificial EPSPs did not show temporal summation. Blockade of the hyperpolarization-activated cation current ( I h) resulted in less attenuation by 17% for somatopetal and by 47% for somatofugal sEPSPs. A pronounced location-dependent temporal summation of EPSP trains was seen. The subcellular distribution and biophysical properties of I h were studied in cell-attached patches. Within less than ∼400 μm of the soma, a low density of ∼3 pA/μm2 was found, which increased to ∼40 pA/μm2 in the apical distal dendrite. I h showed activation and deactivation kinetics with time constants faster than 40 ms and half-maximal activation at −95 mV. These findings suggest that integration of synaptic input to the apical tuft and the basal dendrites occurs spatially independently. This is due to a high I h channel density in the apical tuft that increases the electrotonic distance between these two compartments in comparison to a passive dendrite.


1998 ◽  
Vol 79 (5) ◽  
pp. 2432-2446 ◽  
Author(s):  
Peter C. Schwindt ◽  
Wayne E. Crill

Schwindt, Peter C. and Wayne E. Crill. Synaptically evoked dendritic action potentials in rat neocortical pyramidal neurons. J. Neurophysiol. 79: 2432–2446, 1998. In a previous study iontophoresis of glutamate on the apical dendrite of layer 5 pyramidal neurons from rat neocortex was used to identify sites at which dendritic depolarization evoked small, prolonged Ca2+ spikes and/or low-threshold Na+ spikes recorded by an intracellular microelectrode in the soma. These spikes were identified as originating in the dendrite. Here we evoke similar dendritic responses by electrical stimulation of presynaptic elements near the tip of the iontophoretic electrode with the use of a second extracellular electrode. In 9 of 12 recorded cells, electrically evoked excitatory postsynaptic potentials (EPSPs) above a minimum size triggered all-or-none postsynaptic responses similar to those evoked by dendritic glutamate iontophoresis at the same site. Both the synaptically evoked and the iontophoretically evoked depolarizations were abolished reversably by blockade of glutamate receptors. In all recorded cells, the combination of iontophoresis and an EPSP, each of which was subthreshold for the dendritic spike when given alone, evoked a dendritic spike similar to that evoked by a sufficiently large iontophoresis. In one cell tested, dendritic spikes could be evoked by the summation of two independent subthreshold EPSPs evoked by stimulation at two different locations. We conclude that the dendritic spikes are not unique to the use of glutamate iontophoresis because similar spikes can be evoked by EPSPs. We discuss the implications of these results for synaptic integration and for the interpretation of recorded synaptic potentials.


2000 ◽  
Vol 83 (1) ◽  
pp. 70-80 ◽  
Author(s):  
Jian Kang ◽  
John R. Huguenard ◽  
David A. Prince

To investigate voltage-gated potassium channels underlying action potentials (APs), we simultaneously recorded neuronal APs and single K+ channel activities, using dual patch-clamp recordings (1 whole cell and 1 cell-attached patch) in single-layer V neocortical pyramidal neurons of rat brain slices. A fast voltage-gated K+ channel with a conductance of 37 pS (Kf) opened briefly during AP repolarization. Activation of Kf channels also was triggered by patch depolarization and did not require Ca2+influx. Activation threshold was about −20 mV and inactivation was voltage dependent. Mean duration of channel activities after single APs was 6.1 ± 0.6 ms (mean ± SD) at resting membrane potential (−64 mV), 6.7 ± 0.7 ms at −54 mV, and 62 ± 15 ms at −24 mV. The activation and inactivation properties suggest that Kf channels function mainly in AP repolarization but not in regulation of firing. Kf channels were sensitive to a low concentration of tetraethylammonium (TEA, 1 mM) but not to charybdotoxin (ChTX, 100 nM). Activities of A-type channels (KA) also were observed during AP repolarization. KA channels were activated by depolarization with a threshold near −45 mV, suggesting that KA channels function in both repolarization and timing of APs. Inactivation was voltage dependent with decay time constants of 32 ± 6 ms at −64 mV (rest), 112 ± 28 ms at −54 mV, and 367 ± 34 ms at −24 mV. KA channels were localized in clusters and were characterized by steady-state inactivation, multiple subconductance states (36 and 19 pS), and inhibition by 5 mM 4-aminopyridine (4-AP) but not by 1 mM TEA. A delayed rectifier K+ channel (Kdr) with a unique conductance of 17 pS was recorded from cell-attached patches with TEA/4-AP-filled pipettes. Kdrchannels were activated by depolarization with a threshold near −25 mV and showed delayed long-lasting activation. Kdr channels were not activated by single action potentials. Large conductance Ca2+-activated K+ (BK) channels were not triggered by neuronal action potentials in normal slices and only opened as neuronal responses deteriorated (e.g., smaller or absent spikes) and in a spike-independent manner. This study provides direct evidence for different roles of various K+ channels during action potentials in layer V neocortical pyramidal neurons. Kf and KA channels contribute to AP repolarization, while KA channels also regulate repetitive firing. Kdr channels also may function in regulating repetitive firing, whereas BK channels appear to be activated only in pathological conditions.


2002 ◽  
Vol 87 (5) ◽  
pp. 2490-2504 ◽  
Author(s):  
Michelle Day ◽  
Patricia A. Olson ◽  
Josef Platzer ◽  
Joerg Striessnig ◽  
D. James Surmeier

There is growing evidence linking alterations in serotonergic signaling in the prefrontal cortex to the etiology of schizophrenia. Prefrontal pyramidal neurons are richly innervated by serotonergic fibers and express high levels of serotonergic 5-HT2-class receptors. It is unclear, however, how activation of these receptors modulates cellular activity. To help fill this gap, whole cell voltage-clamp and single-cell RT-PCR studies of acutely isolated layer V–VI prefrontal pyramidal neurons were undertaken. The vast majority (>80%) of these neurons had detectable levels of 5-HT2A or 5-HT2C receptor mRNA. Bath application of 5-HT2 agonists inhibited voltage-dependent Ca2+ channel currents. L-type Ca2+ channels were a particularly prominent target of this signaling pathway. The L-type channel modulation was blocked by disruption of Gαq signaling or by inhibition of phospholipase Cβ. Antagonism of intracellular inositol trisphosphate signaling, chelation of intracellular Ca2+, or depletion of intracellular Ca2+ stores also blocked this modulation. Inhibition of the Ca2+-dependent phosphatase calcineurin prevented receptor-mediated modulation of L-type currents. Last, the 5-HT2 receptor modulation was robustly expressed in neurons from Cav1.3 knockout mice. These findings argue that 5-HT2receptors couple through Gαq proteins to trigger a phospholipase Cβ/inositol trisphosphate signaling cascade resulting in the mobilization of intracellular Ca2+, activation of calcineurin, and inhibition of Cav1.2 L-type Ca2+currents. This modulation and its blockade by atypical neuroleptics could have wide-ranging effects on synaptic integration and long-term gene expression in deep-layer prefrontal pyramidal neurons.


2019 ◽  
Author(s):  
Alessandro R. Galloni ◽  
Aeron Laffere ◽  
Ede Rancz

AbstractAnatomical similarity across the neocortex has led to the common assumption that the circuitry is modular and performs stereotyped computations. Layer 5 pyramidal neurons (L5PNs) in particular are thought to be central to cortical computation because of their extensive arborisation and nonlinear dendritic operations. Here, we demonstrate that computations associated with dendritic Ca2+ plateaus in L5PNs vary substantially between the primary and secondary visual cortices. L5PNs in the secondary visual cortex show reduced dendritic excitability and smaller propensity for burst firing. This reduced excitability is correlated with shorter apical dendrites. Using numerical modelling, we uncover a universal principle underlying the influence of apical length on dendritic backpropagation and excitability, based on a Na+ channel-dependent broadening of backpropagating action potentials. In summary, we provide new insights into the modulation of dendritic excitability by apical dendrite length and show that the operational repertoire of L5 neurons is not universal throughout the brain.


2011 ◽  
Vol 105 (3) ◽  
pp. 1372-1379 ◽  
Author(s):  
Sonia Gasparini

Layer V principal neurons of the medial entorhinal cortex receive the main hippocampal output and relay processed information to the neocortex. Despite the fundamental role hypothesized for these neurons in memory replay and consolidation, their dendritic features are largely unknown. High-speed confocal and two-photon Ca2+ imaging coupled with somatic whole cell patch-clamp recordings were used to investigate spike back-propagation in these neurons. The Ca2+ transient associated with a single back-propagating action potential was considerably smaller at distal dendritic locations (>200 μm from the soma) compared with proximal ones. Perfusion of Ba2+ (150 μM) or 4-aminopyridine (2 mM) to block A-type K+ currents significantly increased the amplitude of the distal, but not proximal, Ca2+ transients, which is strong evidence for an increased density of these channels at distal dendritic locations. In addition, the Ca2+ transients decreased with each subsequent spike in a 20-Hz train; this activity-dependent decrease was also more prominent at more distal locations and was attenuated by the perfusion of the protein kinase C activator phorbol-di-acetate. These data are consistent with a phosphorylation-dependent control of back-propagation during trains of action potentials, attributable mainly to an increase in the time constant of recovery from voltage-dependent inactivation of dendritic Na+ channels. In summary, dendritic Na+ and A-type K+ channels control spike back-propagation in layer V entorhinal neurons. Because the activity of these channels is highly modulated, the extent of the dendritic Ca2+ influx is as well, with important functional implications for dendritic integration and associative synaptic plasticity.


2018 ◽  
Vol 119 (5) ◽  
pp. 1693-1698
Author(s):  
Jay Spampanato ◽  
Anne Gibson ◽  
F. Edward Dudek

Macrocyclic lactones (MLs) are commonly used treatments for parasitic worm and insect infections in humans, livestock, and companion animals. MLs target the invertebrate glutamate-activated chloride channel that is not present in vertebrates. MLs are not entirely inert in vertebrates, though; they have been reported to have activity in heterologous expression systems consisting of ligand-gated ion channels that are present in the mammalian central nervous system (CNS). However, these compounds are typically not able to reach significant concentrations in the CNS because of the activity of the blood-brain barrier P-glycoprotein extrusion system. Despite this, these compounds are able to reach low levels in the CNS that may be useful in the design of novel “designer” ligand-receptor systems that can be used to directly investigate neuronal control of behavior in mammals and have potential for use in treating human neurological diseases. To determine whether MLs might affect neurons in intact brains, we investigated the activity of the ML moxidectin (MOX) at native GABA receptors. Specifically, we recorded tonic and phasic miniature inhibitory postsynaptic currents (mIPSCs) in ex vivo brain slices. Our data show that MOX potentiated tonic GABA currents in a dose-dependent manner but had no concomitant effects on phasic GABA currents (i.e., MOX had no effect on the amplitude, frequency, or decay kinetics of mIPSCs). These studies indicate that behavioral experiments that implement a ML-based novel ligand-receptor system should take care to control for potential effects of the ML on native tonic GABA receptors.NEW & NOTEWORTHY We have identified a novel mechanism of action in the mammalian central nervous system for the antihelminthic moxidectin, commonly prescribed to animals worldwide and currently being evaluated for use in humans. Specifically, moxidectin applied to rodent brain slices selectively enhanced the tonic GABA conductance of hippocampal pyramidal neurons.


2003 ◽  
Vol 89 (6) ◽  
pp. 3143-3154 ◽  
Author(s):  
Andreas T. Schaefer ◽  
Matthew E. Larkum ◽  
Bert Sakmann ◽  
Arnd Roth

Neurons display a variety of complex dendritic morphologies even within the same class. We examined the relationship between dendritic arborization and the coupling between somatic and dendritic action potential (AP) initiation sites in layer 5 (L5) neocortical pyramidal neurons. Coupling was defined as the relative reduction in threshold for initiation of a dendritic calcium AP due to a coincident back-propagating AP. Simulations based on reconstructions of biocytin-filled cells showed that addition of oblique branches of the main apical dendrite in close proximity to the soma ( d < 140 μm) increases the coupling between the apical and axosomatic AP initiation zones, whereas incorporation of distal branches decreases coupling. Experimental studies on L5 pyramids in acute brain slices revealed a highly significant ( n = 28, r = 0.63, P < 0.0005) correlation: increasing the fraction of proximal oblique dendrites ( d < 140 μm), e.g., from 30 to 60% resulted on average in an increase of the coupling from approximately 35% to almost 60%. We conclude that variation in dendritic arborization may be a key determinant of variability in coupling (49 ± 17%; range 19–83%; n = 37) and is likely to outweigh the contribution made by variations in active membrane properties. Thus coincidence detection of inputs arriving from different cortical layers is strongly regulated by differences in dendritic arborization.


Sign in / Sign up

Export Citation Format

Share Document