Single-Unit Responses in the Inferior Colliculus of Decerebrate Cats I. Classification Based on Frequency Response Maps

1999 ◽  
Vol 82 (1) ◽  
pp. 152-163 ◽  
Author(s):  
Ramnarayan Ramachandran ◽  
Kevin A. Davis ◽  
Bradford J. May

This study proposes a classification system for neurons in the central nucleus of the inferior colliculus (ICC) that is based on excitation and inhibition patterns of single-unit responses in decerebrate cats. The decerebrate preparation allowed extensive characterization of physiological response types without the confounding effects of anesthesia. The tone-driven discharge rates of individual units were measured across a range of frequencies and levels to map excitatory and inhibitory response areas for contralateral monaural stimulation. The resulting frequency response maps can be grouped into the following three populations: type V maps exhibit a wide V-shaped excitatory area and no inhibition; type I maps show a more restricted I-shaped region of excitation that is flanked by inhibition at lower and higher frequencies; and type O maps display an O-shaped island of excitation at low stimulus levels that is bounded by inhibition at higher levels. Units that produce a type V map typically have a low best frequency (BF: the most sensitive frequency), a low rate of spontaneous activity, and monotonic rate-level functions for both BF tones and broadband noise. Type I and type O units have BFs that span the cat’s range of audible frequencies and high rates of spontaneous activity. Like type V units, type I units are excited by BF tones and noise at all levels, but their rate-level functions may become nonmonotonic at high levels. Type O units are inhibited by BF tones and noise at high levels. The existence of distinct response types is consistent with a conceptual model in which the unit types receive dominant inputs from different sources and shows that these functionally segregated pathways are specialized to play complementary roles in the processing of auditory information.

1999 ◽  
Vol 82 (1) ◽  
pp. 164-175 ◽  
Author(s):  
Kevin A. Davis ◽  
Ramnarayan Ramachandran ◽  
Bradford J. May

Single units in the central nucleus of the inferior colliculus (ICC) of unanesthetized decerebrate cats can be grouped into three distinct types (V, I, and O) according to the patterns of excitation and inhibition revealed in contralateral frequency response maps. This study extends the description of these response types by assessing their ipsilateral and binaural response map properties. Here the nature of ipsilateral inputs is evaluated directly using frequency response maps and compared with results obtained from methods that rely on sensitivity to interaural level differences (ILDs). In general, there is a one-to-one correspondence between observed ipsilateral input characteristics and those inferred from ILD manipulations. Type V units receive ipsilateral excitation and show binaural facilitation (EE properties); type I and type O units receive ipsilateral inhibition and show binaural excitatory/inhibitory (EI) interactions. Analyses of binaural frequency response maps show that these ILD effects extend over the entire receptive field of ICC units. Thus the range of frequencies that elicits excitation from type V units is expanded with increasing levels of ipsilateral stimulation, whereas the excitatory bandwidth of type I and O units decreases under the same binaural conditions. For the majority of ICC units, application of bicuculline, an antagonist for GABAA-mediated inhibition, does not alter the basic effects of binaural stimulation; rather, it primarily increases spontaneous and maximum discharge rates. These results support our previous interpretations of the putative dominant inputs to ICC response types and have important implications for midbrain processing of competing free-field sounds that reach the listener with different directional signatures.


2005 ◽  
Vol 94 (2) ◽  
pp. 1180-1198 ◽  
Author(s):  
Courtney C. Lane ◽  
Bertrand Delgutte

Spatial release from masking (SRM), a factor in listening in noisy environments, is the improvement in auditory signal detection obtained when a signal is separated in space from a masker. To study the neural mechanisms of SRM, we recorded from single units in the inferior colliculus (IC) of barbiturate-anesthetized cats, focusing on low-frequency neurons sensitive to interaural time differences. The stimulus was a broadband chirp train with a 40-Hz repetition rate in continuous broadband noise, and the unit responses were measured for several signal and masker (virtual) locations. Masked thresholds (the lowest signal-to-noise ratio, SNR, for which the signal could be detected for 75% of the stimulus presentations) changed systematically with signal and masker location. Single-unit thresholds did not necessarily improve with signal and masker separation; instead, they tended to reflect the units' azimuth preference. Both how the signal was detected (through a rate increase or decrease) and how the noise masked the signal response (suppressive or excitatory masking) changed with signal and masker azimuth, consistent with a cross-correlator model of binaural processing. However, additional processing, perhaps related to the signal's amplitude modulation rate, appeared to influence the units' responses. The population masked thresholds (the most sensitive unit's threshold at each signal and masker location) did improve with signal and masker separation as a result of the variety of azimuth preferences in our unit sample. The population thresholds were similar to human behavioral thresholds in both SNR value and shape, indicating that these units may provide a neural substrate for low-frequency SRM.


2002 ◽  
Vol 88 (5) ◽  
pp. 2251-2261 ◽  
Author(s):  
Ramnarayan Ramachandran ◽  
Bradford J. May

Decerebration allows single-unit responses in the central nucleus of the inferior colliculus (ICC) to be studied in the absence of anesthesia and descending efferent influences. When this procedure is applied to cats, three neural response types (V, I, and O) can be identified by distinct patterns of excitation and inhibition in pure-tone frequency-response maps. Similarities of the definitive response map features with those of projection neurons in the auditory brain stem have led to the proposal that the ICC response types are derived from different sources of ascending input that remain functionally segregated within the midbrain. Additional evidence for the existence of these hypothesized parallel processing pathways has been obtained in our previous investigations of the effects of interaural level differences, brain stem lesions, and pharmacological manipulations on physiologically classified units. This study extends our characterization of the functional segregation of single-unit activity in the ICC by investigating how sensitivity to interaural time differences (ITDs) is related to the response types that are observed in decerebrate cats. The results of these experiments support our parallel-processing model of the ICC by linking the ITD sensitivity of type V and I units to putative inputs from the medial superior olive and lateral superior olive and by showing that most type O units lack a systematic sensitivity to binaural temporal information presumably because their dominant ascending inputs arise from weakly binaural neurons in the dorsal cochlear nucleus.


2007 ◽  
Vol 98 (3) ◽  
pp. 1475-1488 ◽  
Author(s):  
Kevin A. Davis ◽  
Oleg Lomakin ◽  
Michael J. Pesavento

The dorsal nucleus of the lateral lemniscus (DNLL) receives afferent inputs from many brain stem nuclei and, in turn, is a major source of inhibitory inputs to the inferior colliculus (IC). The goal of this study was to characterize the monaural and binaural response properties of neurons in the DNLL of unanesthetized decerebrate cat. Monaural responses were classified according to the patterns of excitation and inhibition observed in contralateral and ipsilateral frequency response maps. Binaural classification was based on unit sensitivity to interaural level differences. The results show that units in the DNLL can be grouped into three distinct types. Type v units produce contralateral response maps that show a wide V-shaped excitatory area and no inhibition. These units receive ipsilateral excitation and exhibit binaural facilitation. The contralateral maps of type i units show a more restricted I-shaped region of excitation that is flanked by inhibition. Type o maps display an O-shaped island of excitation at low stimulus levels that is bounded by inhibition at higher levels. Both type i and type o units receive ipsilateral inhibition and exhibit binaural inhibition. Units that produce type v maps have a low best frequency (BF), whereas type i and type o units have high BFs. Type v and type i units give monotonic rate-level responses for both BF tones and broadband noise. Type o units are inhibited by tones at high levels, but are excited by high-level noise. These results show that the DNLL can exert strong, differential effects in the IC.


Author(s):  
W. Jurecka ◽  
W. Gebhart ◽  
H. Lassmann

Diagnosis of metabolic storage disease can be established by the determination of enzymes or storage material in blood, urine, or several tissues or by clinical parameters. Identification of the accumulated storage products is possible by biochemical analysis of isolated material, by histochemical demonstration in sections, or by ultrastructural demonstration of typical inclusion bodies. In order to determine the significance of such inclusions in human skin biopsies several types of metabolic storage disease were investigated. The following results were obtained.In MPS type I (Pfaundler-Hurler-Syndrome), type II (Hunter-Syndrome), and type V (Ullrich-Scheie-Syndrome) mainly “empty” vacuoles were found in skin fibroblasts, in Schwann cells, keratinocytes and macrophages (Dorfmann and Matalon 1972). In addition, prominent vacuolisation was found in eccrine sweat glands. The storage material could be preserved in part by fixation with cetylpyridiniumchloride and was also present within fibroblasts grown in tissue culture.


Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


Author(s):  
Laura Hurley

The inferior colliculus (IC) receives prominent projections from centralized neuromodulatory systems. These systems include extra-auditory clusters of cholinergic, dopaminergic, noradrenergic, and serotonergic neurons. Although these modulatory sites are not explicitly part of the auditory system, they receive projections from primary auditory regions and are responsive to acoustic stimuli. This bidirectional influence suggests the existence of auditory-modulatory feedback loops. A characteristic of neuromodulatory centers is that they integrate inputs from anatomically widespread and functionally diverse sets of brain regions. This connectivity gives neuromodulatory systems the potential to import information into the auditory system on situational variables that accompany acoustic stimuli, such as context, internal state, or experience. Once released, neuromodulators functionally reconfigure auditory circuitry through a variety of receptors expressed by auditory neurons. In addition to shaping ascending auditory information, neuromodulation within the IC influences behaviors that arise subcortically, such as prepulse inhibition of the startle response. Neuromodulatory systems therefore provide a route for integrative behavioral information to access auditory processing from its earliest levels.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Deepshikha Bhowmik ◽  
Shiela Chetri ◽  
Bhaskar Jyoti Das ◽  
Debadatta Dhar Chanda ◽  
Amitabha Bhattacharjee

Abstract Objective This study was designed to discover the dissemination of virulence genes in Methicillin-resistant Staphylococcus aureus from clinical, community and environmental settings. Results This study includes 1165 isolates collected from hospital, community and environmental settings. Among them sixty three were confirmed as MRSA with varied SCCmec types viz; type I, type II, type III, type IV, type V, type VI, type VII, type VIII and type XII. The virulence gene such as sea (n = 54), seb (n = 21), eta (n = 27), etb (n = 2), cna (n = 24), ica (n = 2) and tst (n = 30) was also revealed from this study. The study underscores coexistence of resistance cassette and virulence genes among clinical and environment isolates which is first of its kind from this part of the world.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


Sign in / Sign up

Export Citation Format

Share Document