Neural Responses in the Inferior Colliculus to Binaural Masking Level Differences Created by Inverting the Noise in One Ear

2000 ◽  
Vol 84 (2) ◽  
pp. 844-852 ◽  
Author(s):  
Alan R. Palmer ◽  
Dan Jiang ◽  
David McAlpine

We have measured the responses of inferior colliculus neurons in the anesthetized guinea pig to signals which in human psychophysical experiments reveal a release of masking as a result of binaural processing (the binaural masking level difference: BMLD). More specifically we have used diotic tones at 500 Hz (So) masked by noise that is either identical at the two ears (No) or inverted in one ear (Nπ). This combination of signals and noise maskers produces a prominent masking release in humans such that the So signal is about 6–12 dB more detectable in the presence of the Nπ noise than the No noise. Low-frequency inferior colliculus neurons are sensitive to the interaural delay of the masking noise and generally respond most to the components nearest their best frequency. Since most inferior colliculus neurons have peaks in their delay functions close to zero interaural time delay this means that while No noise is effective in driving the unit, Nπ noise is much less effective. As the level of an So tone was progressively increased in the presence of No and Nπ noises, the first response could be either an increase or a decrease in the activity due to the noise. However, because Nπ generated little or no activity itself, the predominant response to the So tone was an increase in discharge in this condition. Masked thresholds were defined as the point at which the standard separation D (related to the d′ of signal detection theory) = 1 in either direction. BMLDs were measured in single neurons and in the majority of units were in a direction consistent with the psychophysical observations irrespective of the direction of the discharge rate change that occurred at threshold. The lowest masked thresholds always occurred at or near the signal frequency of 500 Hz. An average value of the single unit BMLD around 500 Hz was 3.6 dB (NoSo vs. NπSo) compared with 6.6 dB for the NoSo versus NoSπ BMLD we had previously reported. This lower magnitude is consistent with the hierarchy of human psychophysical BMLDs.

1997 ◽  
Vol 77 (6) ◽  
pp. 3085-3106 ◽  
Author(s):  
Dan Jiang ◽  
David McAlpine ◽  
Alan R. Palmer

Jiang, Dan, David McAlpine, and Alan R. Palmer. Responses of neurons in the inferior colliculus to binaural masking level difference stimuli measured by rate-versus-level functions. J. Neurophysiol. 77: 3085–3106, 1997. The psychophysical detection threshold of a low-frequency tone masked by broadband noise is reduced by ≤15 dB by inversion of the tone in one ear (called the binaural masking level difference: BMLD). The contribution of 120 low-frequency neurons (best frequencies 168–2,090 Hz) in the inferior colliculus (ICC) of the guinea pig to binaural unmasking of 500-Hz tones masked by broadband noise was examined. We measured rate-level functions of the responses to identical signals (So) and noise (No) at the two ears (NoSo) and to identical noise but with the signal inverted at one ear (NoSπ): the noise was 7–15 dB suprathreshold. The masked threshold was estimated by the standard separation, “D”. The neural BMLD was estimated as the difference between the masked thresholds for NoSo and NoSπ. The presence of So and Sπ tones was indicated by discharge rate increases in 55.3% of neurons. In 36.4% of neurons, the presence of So tones was indicated by an increase in discharge rate and Sπ tones by a decrease. In 6.8% of neurons, both So and Sπ tones caused a decrease in discharge rate. In only 1.5% of neurons was So indicated by a decrease and Sπ by an increase in discharge rate. Responses to the binaural configurations were consistent with the neuron's interaural delay sensitivities; 34.4% of neurons showing increases in discharge rate to both So and Sπ tones gave positive BMLDs ≥3 dB (Sπ tones were detected at lower levels than So), whereas 37.3% gave negative BMLDs ≥3 dB. For neurons in which So signals caused an increase in the discharge rate and Sπ a decrease, 72.7% gave positive BMLDs ≥3 dB and only 4.5% gave negative BMLDs ≥3 dB. The results suggest that the responses of single ICC neurons are consistent with the psychophysical BMLDs for NoSo versus NoSπ at 500 Hz, and with current binaural interaction models based on coincidence detection. The neurons likely to contribute to the psychophysical BMLD are those with BFs near 500 Hz, but detection of So and Sπ tones may depend on different populations of neurons.


1987 ◽  
Vol 58 (3) ◽  
pp. 543-561 ◽  
Author(s):  
J. C. Chan ◽  
T. C. Yin ◽  
A. D. Musicant

1. We studied cells in the central nucleus of the inferior colliculus of the cat that were sensitive to interaural time delays (ITDs) in order to evaluate the influence of the stimulus spectrum of noise signals. Stimuli were sharply filtered low-, high-, and band-pass noise signals whose cutoff frequencies and bandwidths were systematically varied. The responses to ITDs of these noise signals were compared with responses obtained to ITDs of broadband noise and pure tones. 2. The discharge rate in response to band-pass noise as a function of ITD was usually a cyclic function with decreasing peak amplitudes at longer ITDs. The reciprocal of the mean interval between adjacent peaks indicated how rapidly the response rate varied with ITD and was termed the response frequency (RF). This RF was approximately equal to the median frequency of the stimulus spectrum filtered by the cell's sync-rate curve, which was the product of the synchronization to interaural phase and the discharge rate plotted against frequency. This suggests that the RF was determined by all the spectral components in the stimulus that fell within the frequency range in which the cell's response was synchronized. The contribution of each component was proportional to the sync-rate for that frequency. 3. The central peak of the ITD function usually fell within the physiological range of ITDs (+/- 400 microseconds). The location of this peak did not vary significantly with changes in stimulus spectrum by comparison with responses to tones of different frequency. Its shape also remained constant, except for a decrease in width when high-frequency components within the range of the sync-rate curve were added to the stimulus. A few cells responded with a minimal discharge instead of a maximal near-zero ITD, and this central minimum had similar properties as the central peak. The amplitude of the secondary peaks of the ITD function decreased as the stimulus bandwidth that overlapped the sync-rate curve broadened. 4. The sum of the ITD functions to two band-pass signals was similar to that of a broadband signal whose spectrum was composed of the sum of the band-pass spectra. 5. From these binaural responses we could make inferences about the response characteristics of the monaural inputs to binaural neurons. We then verified these predictions by studying responses of low-frequency trapezoid body fibers to band-pass noises.


2014 ◽  
Vol 112 (12) ◽  
pp. 3086-3094 ◽  
Author(s):  
Laura E. Hughes ◽  
James B. Rowe ◽  
Boyd C. P. Ghosh ◽  
Robert P. Carlyon ◽  
Christopher J. Plack ◽  
...  

Under binaural listening conditions, the detection of target signals within background masking noise is substantially improved when the interaural phase of the target differs from that of the masker. Neural correlates of this binaural masking level difference (BMLD) have been observed in the inferior colliculus and temporal cortex, but it is not known whether degeneration of the inferior colliculus would result in a reduction of the BMLD in humans. We used magnetoencephalography to examine the BMLD in 13 healthy adults and 13 patients with progressive supranuclear palsy (PSP). PSP is associated with severe atrophy of the upper brain stem, including the inferior colliculus, confirmed by voxel-based morphometry of structural MRI. Stimuli comprised in-phase sinusoidal tones presented to both ears at three levels (high, medium, and low) masked by in-phase noise, which rendered the low-level tone inaudible. Critically, the BMLD was measured using a low-level tone presented in opposite phase across ears, making it audible against the noise. The cortical waveforms from bilateral auditory sources revealed significantly larger N1m peaks for the out-of-phase low-level tone compared with the in-phase low-level tone, for both groups, indicating preservation of early cortical correlates of the BMLD in PSP. In PSP a significant delay was observed in the onset of the N1m deflection and the amplitude of the P2m was reduced, but these differences were not restricted to the BMLD condition. The results demonstrate that although PSP causes subtle auditory deficits, binaural processing can survive the presence of significant damage to the upper brain stem.


1986 ◽  
Vol 55 (2) ◽  
pp. 280-300 ◽  
Author(s):  
T. C. Yin ◽  
J. C. Chan ◽  
D. R. Irvine

We examined the responses of low-frequency neurons in the central nucleus of the inferior colliculus (ICC) of the cat to interaurally delayed, wideband noise stimuli. The stimuli were pseudorandom noise signals that were generated digitally with a nominal bandwidth of 60-4,000 Hz. We also compared the responses to noise with those obtained from interaural phase differences of pure tones. We studied 144 neurons with characteristic frequencies below 2.5 kHz. Eighty-five percent (85%) of these were sensitive to changes in both interaural time differences (ITDs) of noise and interaural phase differences of pure tones, only 2% were sensitive to one stimulus but not the other, and the remainder were insensitive to both stimuli. For most cells the discharge rate was modulated in an approximately cyclic fashion by changes in ITDs of the wideband noise stimuli. The maximal spike counts often occurred near zero ITD, and there was considerable variability in the nature of the cycling, though it usually disappeared for ITDs greater than +/- 4,000 microseconds. The position of the central peak was usually (65%) within the physiologically relevant range of +/- 400 microseconds, and most (80%) occurred at positive ITDs, which corresponded to delays to the ipsilateral stimulus. In general, the shapes of the responses were not affected by changes in stimulus level above threshold. As long as identical noises were delivered to both ears, the responses were not sensitive to the particular noise stimulus used. When uncorrelated noises were delivered to the two ears, there was no sensitivity to ITDs. Composite curves were computed by linear summation of the responses to ITDs of pure tones at frequencies spaced at equal intervals throughout each cell's response area. The shapes of composite curves were similar to the responses of the same cell to ITDs of wideband noise stimuli. The positions of the central peaks of these two functions were highly correlated (r = 0.91, slope = 0.97). The values of characteristic delay and characteristic phase computed from the tonal responses were found to be good indicators of the shapes of the noise delay curves. Characteristic phases (CPs) near zero were associated with noise delay curves symmetric about the central peak, CPs near 0.5 cycles with those symmetric about the trough, while CPs between 0 and 0.5 or between 0.5 and 1.0 had noise delay curves that were asymmetric with a prominent trough to the left or right, respectively, of the central peak.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (5) ◽  
pp. 2818-2826 ◽  
Author(s):  
S. J. Sterbing ◽  
W. R. D'Angelo ◽  
E.-M. Ostapoff ◽  
S. Kuwada

Most sounds in the natural environment are amplitude-modulated (AM). To determine if AM alters the neuronal sensitivity to interaural time differences (ITDs) in low-frequency sounds, we tested neuronal responses to a binaural beat stimulus with and without modulation. We recorded from single units in the inferior colliculus of the unanesthetized rabbit. We primarily used low frequency (∼25 Hz) modulation that was identical at both ears. We found that modulation could enhance, suppress, or not affect the discharge rate. In extreme cases, a neuron that showed no response to the unmodulated binaural beat did so when modulation was added to both ears. At the other extreme, a neuron that showed sensitivity to the unmodulated binaural beat ceased firing with modulation. Modulation could also affect the frequency range of ITD sensitivity, best ITD, and ITD tuning width. Despite these changes in individual neurons, averaging across all neurons, the peak and width of the population ITD function remained unchanged. Because ITD-sensitive neurons also time-locked to the modulation frequency, the location and sound attributes are processed simultaneously by these neurons.


1999 ◽  
Vol 81 (2) ◽  
pp. 722-734 ◽  
Author(s):  
Alan R. Palmer ◽  
Dan Jiang ◽  
David McAlpine

Desynchronizing responses to correlated noise: a mechanism for binaural masking level differences at the inferior colliculus. We examined the adequacy of decorrelation of the responses to dichotic noise as an explanation for the binaural masking level difference (BMLD). The responses of 48 low-frequency neurons in the inferior colliculus of anesthetized guinea pigs were recorded to binaurally presented noise with various degrees of interaural correlation and to interaurally correlated noise in the presence of 500-Hz tones in either zero or π interaural phase. In response to fully correlated noise, neurons’ responses were modulated with interaural delay, showing quasiperiodic noise delay functions (NDFs) with a central peak and side peaks, separated by intervals roughly equivalent to the period of the neuron’s best frequency. For noise with zero interaural correlation (independent noises presented to each ear), neurons were insensitive to the interaural delay. Their NDFs were unmodulated, with the majority showing a level of activity approximately equal to the mean of the peaks and troughs of the NDF obtained with fully correlated noise. Partial decorrelation of the noise resulted in NDFs that were, in general, intermediate between the fully correlated and fully decorrelated noise. Presenting 500-Hz tones simultaneously with fully correlated noise also had the effect of demodulating the NDFs. In the case of tones with zero interaural phase, this demodulation appeared to be a saturation process, raising the discharge at all noise delays to that at the largest peak in the NDF. In the majority of neurons, presenting the tones in π phase had a similar effect on the NDFs to decorrelating the noise; the response was demodulated toward the mean of the peaks and troughs of the NDF. Thus the effect of added tones on the responses of delay-sensitive inferior colliculus neurons to noise could be accounted for by a desynchronizing effect. This result is entirely consistent with cross-correlation models of the BMLD. However, in some neurons, the effects of an added tone on the NDF appeared more extreme than the effect of decorrelating the noise, suggesting the possibility of additional inhibitory influences.


2002 ◽  
Vol 02 (01) ◽  
pp. L37-L45
Author(s):  
X. Y. CHEN ◽  
P. M. KOENRAAD

Low frequency noise (LFN) was measured in δ-doped GaAs structures in which the free carriers are confined to a 2-dimensional plane. Three samples grown at different temperatures, resulting in doping layers of a different thickness, are used to study the effects of quantum confinement on the LFN. We observed both 1/f noise and generation-recombination noise components. We find that a stronger quantum confinement results in a bigger Hall mobility and a lower magnitude of the 1/f noise.


1987 ◽  
Vol 57 (4) ◽  
pp. 1130-1147 ◽  
Author(s):  
M. N. Semple ◽  
L. M. Kitzes

The central auditory system could encode information about the location of a high-frequency sound source by comparing the sound pressure levels at the ears. Two potential computations are the interaural intensity difference (IID) and the average binaural intensity (ABI). In this study of the central nucleus of the inferior colliculus (ICC) of the anesthetized gerbil, we demonstrate that responses of 85% of the 97 single units in our sample were jointly influenced by IID and ABI. For a given ABI, discharge rate of most units is a sigmoidal function of IID, and peak rates occur at IIDs favoring the contralateral ear. Most commonly, successive increments of ABI cause successive shifts of the IID functions toward IIDs favoring the ipsilateral ear. Neurons displaying this behavior include many that would conventionally be classified EI (receiving predominantly excitatory input arising from one ear and inhibitory input from the other), many that would be classified EE (receiving predominantly excitatory input arising from each ear), and all that are responsive only to contralateral stimulation. The IID sensitivity of a very few EI neurons is unaffected by ABI, except near threshold. Such units could provide directional information that is independent of source intensity. A few EE neurons are very sensitive to ABI, but are minimally sensitive to IID. Nevertheless, our data indicate that responses of most EE units in ICC are strongly dominated by excitation of contralateral origin. For some units, discharge rate is nonmonotonically related to IID and is maximal when the stimuli at the two ears are of comparable sound pressure. This preference for zero IID is common for all binaural levels. Many EI neurons respond nonmonotonically to ABI. Discharge rates are greater for IIDs representative of contralateral space and are maximal at a single best ABI. For a subset of these neurons, the influence arising from the ipsilateral ear is comprised of a mixture of excitation and inhibition. As a consequence, discharge rates are nonmonotonically related not only to ABI but also to IID. This dual nonmonotonicity creates a clear focus of peak response at a particular ABI/IID combination. Because of their mixed monaural influences, such units would be ascribed to different classes of the conventional (EE/EI) binaural classification scheme depending on the binaural level presented. Several response classes were identified in this study, and each might contribute differently to the encoding of spatial information.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 123 (2) ◽  
pp. 695-706
Author(s):  
Lu Luo ◽  
Na Xu ◽  
Qian Wang ◽  
Liang Li

The central mechanisms underlying binaural unmasking for spectrally overlapping concurrent sounds, which are unresolved in the peripheral auditory system, remain largely unknown. In this study, frequency-following responses (FFRs) to two binaurally presented independent narrowband noises (NBNs) with overlapping spectra were recorded simultaneously in the inferior colliculus (IC) and auditory cortex (AC) in anesthetized rats. The results showed that for both IC FFRs and AC FFRs, introducing an interaural time difference (ITD) disparity between the two concurrent NBNs enhanced the representation fidelity, reflected by the increased coherence between the responses evoked by double-NBN stimulation and the responses evoked by single NBNs. The ITD disparity effect varied across frequency bands, being more marked for higher frequency bands in the IC and lower frequency bands in the AC. Moreover, the coherence between IC responses and AC responses was also enhanced by the ITD disparity, and the enhancement was most prominent for low-frequency bands and the IC and the AC on the same side. These results suggest a critical role of the ITD cue in the neural segregation of spectrotemporally overlapping sounds. NEW & NOTEWORTHY When two spectrally overlapped narrowband noises are presented at the same time with the same sound-pressure level, they mask each other. Introducing a disparity in interaural time difference between these two narrowband noises improves the accuracy of the neural representation of individual sounds in both the inferior colliculus and the auditory cortex. The lower frequency signal transformation from the inferior colliculus to the auditory cortex on the same side is also enhanced, showing the effect of binaural unmasking.


2020 ◽  
Vol 9 (1) ◽  
pp. 1510-1513

The electrical activity of the brain recorded by EEG which used to detect different types of diseases and disorders of the human brain. There is contained a large amount of random noise present during EEG recording, such as artifacts and baseline changes. These noises affect the low -frequency range of the EEG signal. These artifacts hiding some valuable information during analyzing of the EEG signal. In this paper we used the FIR filter for removing low -frequency noise(<1Hz) from the EEG signal. The performance is measured by calculating the SNR and the RMSE. We obtained RMSE average value from the test is 0.08 and the SNR value at frequency(<1Hz) is 0.0190.


Sign in / Sign up

Export Citation Format

Share Document