Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling

2002 ◽  
Vol 10 (2) ◽  
pp. 103-111 ◽  
Author(s):  
Jennifer L. Moran ◽  
Yizheng Li ◽  
Andrew A. Hill ◽  
William M. Mounts ◽  
Christopher P. Miller

Studies described here utilize high-density oligonucleotide arrays to characterize changes in global mRNA expression patterns during proliferation, cell cycle withdrawal, and terminal differentiation in mouse C2C12 myoblasts. Statistical analyses revealed 629 sequences differentially regulated between proliferating and differentiating myoblasts. These genes were clustered using self-organizing maps to identify sets of coregulated genes and were assigned to functional categories that were analyzed for distribution across expression clusters. Clusters were identified with statistically significant enrichment of functional categories including muscle contraction, cell adhesion, extracellular matrix function, cellular metabolism, mitochondrial transport, DNA replication, cell cycle control, mRNA transcription, and unexpectedly, immune regulation. In addition, functional category enrichment data can be used to predict gene function for numerous differentially regulated expressed sequence tags. The results provide new insight into how genes involved in these cellular processes may play a role in skeletal muscle growth and differentiation.

2016 ◽  
Vol 5 ◽  
pp. e304 ◽  
Author(s):  
Silvia Pierandrei ◽  
Andrea Luchetti ◽  
Massimo Sanchez ◽  
Giuseppe Novelli ◽  
Federica Sangiuolo ◽  
...  

2009 ◽  
Vol 297 (2) ◽  
pp. E304-E314 ◽  
Author(s):  
David L. Williamson ◽  
David C. Butler ◽  
Stephen E. Alway

Elevated phosphorylation of AMP-activated protein kinase (AMPK) has been shown to inhibit skeletal muscle growth in both culture and animal models, but its role in differentiation of muscle cells is less clear. p21 is known to have an important role in differentiation, but AMPK's role regulating p21 in differentiation in muscle cultures is unknown. Therefore, the purpose of this study was to determine the role of p21 in differentiation of skeletal muscle cells under conditions of elevated AMPK phosphorylation. Treating C2C12 myoblast cultures with 1 mM 5-aminoimidazole-4-carboxamide 1-β-d-ribonucleoside (AICAR) for up to 24 h induced AMPK phosphorylation. Activation of AMPK reduced p21 protein and mRNA expression, which was associated with reduced G1/S cell cycle transition and p21 promoter activity. AICAR-treated myoblasts undergoing differentiation also had reduced p21 protein expression, reduced myotube formation, and myosin accumulation. When myotube cultures were treated with AICAR for 24 h, p21, myosin protein expression, and MyoD were significantly reduced. Myotube atrophy was also apparent compared with control conditions. Addition of compound C, an AMPK inhibitor, attenuated AICAR's negative effects on the myotube cultures. The nuclear expression of p21 protein appeared to be more affected by AICAR-treated myotubes than the cytosolic portion of p21 protein, which was attenuated with compound C treatment. Further analysis revealed that AICAR treatment increased PGC-1α and decreased FOXO3A protein expression, which was reversed with compound C cotreatment. Knockdown of PGC-1α with shRNA corroborated the compound C data, preserving nuclear FOXO3A and p21 protein expression. These data demonstrate that AICAR-induced AMPK phosphorylation inhibits cell cycle transition, reducing differentiation of myoblasts into myotubes, through PGC-1α-FOXO3A-p21.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. E. Rivera ◽  
S. W. Davies

AbstractSymbiosis with unicellular algae in the family Symbiodiniaceae is common across tropical marine invertebrates. Reef-building corals offer a clear example of cellular dysfunction leading to a dysbiosis that disrupts entire ecosystems in a process termed coral bleaching. Due to their obligate symbiotic relationship, understanding the molecular underpinnings that sustain this symbiosis in tropical reef-building corals is challenging, as any aposymbiotic state is inherently coupled with severe physiological stress. Here, we leverage the subtropical, facultatively symbiotic and calcifying coral Oculina arbuscula to investigate gene expression differences between aposymbiotic and symbiotic branches within the same colonies under baseline conditions. We further compare gene ontology (GO) and KOG enrichment in gene expression patterns from O. arbuscula with prior work in the sea anemone Exaiptasia pallida (Aiptasia) and the salamander Ambystoma maculatum—both of which exhibit endophotosymbiosis with unicellular algae. We identify nitrogen cycling, cell cycle control, and immune responses as key pathways involved in the maintenance of symbiosis under baseline conditions. Understanding the mechanisms that sustain a healthy symbiosis between corals and Symbiodiniaceae algae is of urgent importance given the vulnerability of these partnerships to changing environmental conditions and their role in the continued functioning of critical and highly diverse marine ecosystems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sarayut Radapong ◽  
Kelvin Chan ◽  
Satyajit D. Sarker ◽  
Kenneth J. Ritchie

Oxyresveratrol (OXY) is a small molecule of phytochemical known as hydroxystilbenoids, which have been reported significantly important biological activities. The aim of this study was to elucidate the gene expression and biological pathways altered in MCF7, breast cancer cells. The cytotoxicity to different cancer cell lines was screened using MTT assay and then whole gene expression was elucidated using microarray. The pathways selected also validated by quantitative PCR analysis, fluorometric and western blot assay. A total of 686 genes were found to have altered mRNA expression levels of two-fold or more in the 50 μM OXY-treated group, while 2,338 genes were differentially expressed in the 100 µM-treated group. The relevant visualized global expression patterns of genes and pathways were generated. Apoptosis was activated through mitochondria-lost membrane potential, caspase-3 expression and chromatin condensation without DNA damage. G0/G1 and S phases of the cell cycle control were inhibited dose-dependently by the compound. Rad51 gene (DNA repair pathway) was significantly down-regulated (p < 0.0001). These results indicated that OXY moderated the key genes and pathways in MCF7 cells that could be developed as chemotherapy or chemo-sensitizing agent.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 808
Author(s):  
Chaofan Jin ◽  
Mengya Wang ◽  
Weihao Song ◽  
Xiangfu Kong ◽  
Fengyan Zhang ◽  
...  

Myosins are important eukaryotic motor proteins that bind actin and utilize the energy of ATP hydrolysis to perform a broad range of functions such as muscle contraction, cell migration, cytokinesis, and intracellular trafficking. However, the characterization and function of myosin is poorly studied in teleost fish. In this study, we identified 60 myosin family genes in a marine teleost, black rockfish (Sebastes schlegelii), and further characterized their expression patterns. myosin showed divergent expression patterns in adult tissues, indicating they are involved in different types and compositions of muscle fibers. Among 12 subfamilies, S. schlegelii myo2 subfamily was significantly expanded, which was driven by tandem duplication events. The up-regulation of five representative genes of myo2 in the skeletal muscle during fast-growth stages of juvenile and adult S. schlegelii revealed their active role in skeletal muscle fiber synthesis. Moreover, the expression regulation of myosin during the process of myoblast differentiation in vitro suggested that they contribute to skeletal muscle growth by involvement of both myoblast proliferation and differentiation. Taken together, our work characterized myosin genes systemically and demonstrated their diverse functions in a marine teleost species. This lays foundation for the further studies of muscle growth regulation and molecular mechanisms of indeterminate skeletal muscle growth of large teleost fishes.


2020 ◽  
Author(s):  
Long Li ◽  
Qianqian Shi ◽  
Jian Gao

Abstract Background E2F/DP proteins have been shown to regulate genes implicated in cell cycle control and DNA repair. However, to date, research into the E2F/DP family and its functional role in Moso bamboo has been limited. Results Here, we identified 24 E2F/DP genes in the Moso bamboo genome, including nine E2F, six DP, and eight DEL genes. Simulation of the divergence time of paralogous gene pairs revealed an important role of whole-genome duplication in the expansion of the E2F/DP family. The regulatory element and coexpression network analysis indicated that E2F/DP regulated the expression of cell cycle-related genes. Yeast two hybrid assay and expression analysis based on transcriptome data and in situ hybridization indicated that PheE2F-PheDP complex play important roles in winter moso bamboo shoot growth. Expressional analysis based on qRT-PCR performed diverse expression patterns of PheE2F/DPs in response to both various abiotic stimuli and diurnal cycles. Conclusion These findings provide insights into the E2F/DP family members in Moso bamboo and experimental evidence for further functional verification of the E2F/DP family.


2001 ◽  
Vol 24 (1-4) ◽  
pp. 61-88 ◽  
Author(s):  
Mírian Helene Andrietta ◽  
Núbia Barbosa Eloy ◽  
Adriana Silva Hemerly ◽  
Paulo C.G. Ferreira

Data on cell cycle research in plants indicate that the majority of the fundamental regulators are conserved with other eukaryotes, but the controlling mechanisms imposed on them, and their integration into growth and development is unique to plants. To date, most studies on cell division have been conducted in dicot plants. However, monocot plants have distinct developmental strategies that will affect the regulation of cell division at the meristems. In order to advance our understanding how cell division is integrated with the basic mechanisms controlling cell growth and development in monocots, we took advantage of the sugarcane EST Project (Sucest) to carry an exhaustive data mining to identify components of the cell cycle machinery. Results obtained include the description of distinct classes of cyclin-dependent kinases (CDKs); A, B, D, and H-type cyclins; CDK-interacting proteins, CDK-inhibitory and activating kinases, pRB and E2F transcription factors. Most sugarcane cell cycle genes seem to be member of multigene families. Like in dicot plants, CDKa transcription is not restricted to tissues with elevated meristematic activity, but the vast majority of CDKb-related ESTs are found in regions of high proliferation rates. Expression of CKI genes is far more abundant in regions of less cell division, notably in lateral buds. Shared expression patterns for a group of clusters was unraveled by transcriptional profiling, and we suggest that similar approaches could be used to identify genes that are part of the same regulatory network.


2020 ◽  
Author(s):  
Long Li ◽  
Qianqian Shi ◽  
Zhouqi Li ◽  
Jian Gao

Abstract Background E2F/DP proteins have been shown to regulate genes implicated in cell cycle control and DNA repair. However, to date, research into the potential role of the Moso bamboo E2F/DP family has been limited.Results Here, we identified 23 E2F/DPs in the Moso bamboo genome, including nine E2F genes, six DP genes, eight DEL genes and one gene with a partial E2F domain. An estimation of the divergence time of the paralogous gene pairs suggested that the E2F/DP family expansion primarily occurred through a whole-genome duplication event. A regulatory element and coexpression network analysis indicated that E2F/DP regulated the expression of cell cycle-related genes. A yeast two-hybrid assay and expression analysis based on transcriptome data and in situ hybridization indicated that the PheE2F-PheDP complex played important roles in winter Moso bamboo shoot growth. The qRT-PCR results showed that the PheE2F/DPs exhibited diverse expression patterns in response to drought and salt treatment and diurnal cycles. Conclusion Our findings provide novel insights into the Moso bamboo E2F/DP family and partial experimental evidence for further functional verification of the PheE2F/DPs.


2020 ◽  
Author(s):  
Long Li ◽  
Qianqian Shi ◽  
Jian Gao

Abstract BackgroundE2F/DP proteins have been shown to regulate genes implicated in cell cycle control and DNA repair. However, to date, research into the potential role of Moso bamboo E2F/DP family has been limited.ResultsHere, we identified 24 E2F/DPs in the Moso bamboo genome including nine E2F, six DP, eight DEL and one gene with partial E2F domain. Estimation of the divergence time of paralogous gene pairs suggested that E2F/DP family expansion was mainly contributed by whole-genome duplication event. The regulatory element and coexpression network analysis indicated that E2F/DP regulated the expression of cell cycle-related genes. Yeast two hybrid assay and expression analysis based on transcriptome data and in situ hybridization indicated that PheE2F-PheDP complex played important roles in winter moso bamboo shoot growth. qRT-PCR results showed that PheE2F/DPs performed diverse expression patterns in response to drought and salt treatment and diurnal cycles. ConclusionOur findings provide novel insights into the Moso bamboo E2F/DP family and partial experimental evidence for further functional verification of the PheE2F/DPs.


Sign in / Sign up

Export Citation Format

Share Document