Pulse-Height Selection in X-Ray Fluorescence

1960 ◽  
Vol 4 ◽  
pp. 370-381
Author(s):  
Kurt F.J. Heinrich

AbstractPulse-height analysis is a valuable tool in X-ray fluorescence analysis, both for qualitative and quantitative purposes. The elimination of higher order interferences permits determinations that would otherwise be very difficult or impossible, The systematic application of pulse-height analysis in qualitative work greatly simplifies the interpretation of complex spectra. In certain cases one can apply nondispersive analysis, relying on the pulse-height analyzer alone for separating energy levels of X-ray photons. Technique and limitations of pulse-height analysis will be discussed.

1960 ◽  
Vol 4 ◽  
pp. 488-494
Author(s):  
J.C. Parks ◽  
D.G. Plackmann ◽  
G. H. Beyer

AbstractThe proper choice of an analyzing crystal sometimes makes It possible to suppress second-order reflections which interfere with X-ray fluorescence analysis. Some of the problems associated with the analysis of small amounts of hafnium in zirconium, using a silicon crystal and a pulse-height analyzer, are discussed.


2009 ◽  
Vol 80 (12) ◽  
pp. 126104 ◽  
Author(s):  
Y. P. Zhang ◽  
Yi Liu ◽  
J. W. Yang ◽  
X. Y. Song ◽  
M. Liao ◽  
...  

1965 ◽  
Vol 9 ◽  
pp. 354-364 ◽  
Author(s):  
D. W. Wilbur ◽  
J. W. Gofman

AbstractAn investigation has been made of the relative Kβ intensities in different chemical states of the sulfur atom using the Kα lines, with appropriate corrections, to provide the intensity standards. Both inorganic and organic compounds were included in the study. The data for each compound appear to be reliable to about ± 0.5%, while the whole series of compounds shows a variation greater than 20% in the corrected Kβ/Kα ratios. Energies were also measured, particularly the Kα energies, and their shifts were studied relative to the Kβ, intensity shifts. The work was done with a plane, single-crystal, helium-path spectrometer with proportional counter and pulse-height analysis for detection. The results are indicative of the usefulness of the method both in clarifying an uncertain chemical state and in studying the electronic structure of the bonded atom.


1990 ◽  
Vol 34 ◽  
pp. 149-156
Author(s):  
Zhaogui Liu

AbstractThe rapid progress of x-ray fluorescence analysis spectrometers has been closely associated with advances in computers. Due to the power of computers, it is possible to acquire the data automatically and interpret complex information accurately and quickly, so as to provide both qualitative and quantitative analyses. It is now about thirty years that computers have been applied to X-Ray Fluorescence Analysis (XRFA). Few workers have discussed the style of the various approaches, although many different software packages have been used for XRFA. Requirement analysis has been performed for Energy Dispersive (ED) XRFA, and preliminary designs are given for three types of structures: i. Sequence structure, ii. Tree structure, and iii. Net structure.


1964 ◽  
Vol 8 ◽  
pp. 118-133 ◽  
Author(s):  
William Parrish

AbstractEscape peaks occur when the incident X-ray quantum, energy exceeds the absorption edge energy of the detector element and the resulting X-ray fluorescence is lost from the detector. The most common escape peaks result from 1 K-fluorescence in NaI-scintillation counters and Xe K-, Xe L-, and Kr K-fluorescence in proportional counters. The average pulse amplitude of the escape peak is proportional to the difference of the Energies of the incident and fluorescent X-rays. If the intensity of the escape peak is high as in the case of Mo Kα and a kryptoopreportional counter, and the lower level of the pulse height analyzer is raised to reject the escape peak, the quantum counting efficiency may be reduced by a factor of two. When the pulse height analyzer is set for characteristic incident radiation, escape peaks appear in powder patterns at small diffraction angles. These broad low-intensity peaks are often mistakenly identified as resulting from misalignment, scattering, etc. Each powder reflection can produce its own escape peak which occurs at an angle slightly smaller than the absorption edge of the detector element. In a silicon powder pattern the three strongest reflections produce three resolved escape peaks whose peak intensities are about 4% of their corresponding Cu Kα peaks when the X-ray tube is operated at 50 kV. The escape peak intensities decrease with decreasing X-ray tube voltage and disappear when the voltage is lower than the absorption edge energy of the detector element. Absorption edge peaks observed without the upper level of the pulse height analyzer are similar in appearance, intensity, and diffraction angle to the escape peaks. In complex powder patterns the escape peak pattern is unresolved and may produce a number of very broad peaks.


1972 ◽  
Vol 16 ◽  
pp. 322-335 ◽  
Author(s):  
Davis Carpenter ◽  
John Thatcher

AbstractA comparison of the relative merits of the energy dispersive derector-pulse height analyzer, scintillation detector-graphite monochromator, and proportional detector-pulse height analyzer combinations.Typical energy dispersive detectors are not configured for maximum efficiency on the diffractometer. Being only on the order of 3 mm diameter, a good deal of the available information is not collected by the detector. This is especially true with the Wide optics found in modern diffractometers. The energy dispersive detector incorporated into this system is optimized for the x-ray diffractometer. Its detection area is a 1.25 X 0.25 inch rectangle. The resolution is only sufficient to remove the Kβ portion of the spectrum.Conventional diffractometer techniques incorporate either a scintillation detector-crystal monochromator, or a proportional detector-pulse height analyser combination. The question posed is “what are the advantages in signal to noise ratio and pulse height distribution of the energy dispersive-pulse height analyzer over the more conventional arrangements.”


1957 ◽  
Vol 1 ◽  
pp. 297-313
Author(s):  
Theodore Hall

AbstractAn X-ray fluorescence analysis unit has been designed and built especially for the measurement of certain mineral elements in individual biological tissue sections. Such a section may contain in the neighborhood of 10-10 grams of an element of interest, in a concentration in the range of 1-100 p.p.m.The unit consists of a special high-power X-ray tube with a builtin interchangeable secondary radiator, which irradiates the speciman with the characteristic lines of the radiator element) and a proportional counter and pulse-height analyzer system, which provides analysis of the X-ray spectrum emitted by the specimen. Because the emitted spectrum is greatly simplified by the use of an appropriate radiator element, a diffracting crystal can be omitted, permitting a great increase in absolute sensitivity.The system is feasible only because of two peculiarities of our biological specimens: they are so thin that matrix effects are negligible, and they consist essentially of a few mineral elements in a light matrix.Design considerations, calibration procedures, procedures for the analysis of the observed proportional counter pulse-height spectra and results to date will be discussed.


1960 ◽  
Vol 4 ◽  
pp. 117-129
Author(s):  
W. L. Kehl

AbstractA diffractometer equipped with a gas proportional counter and pulse-height analyzer provides a very satisfactory means of recording the X-ray diffraction patterns of chromium-containing materials with Cu Kα radiation. The fluorescent chromium K radiation can be rejected along with much of the white background radiation without appreciable loss of Cu Kα intensity, and the advantages of copper over chromium or molybdenum radiation can be fully utilized. This is illustrated by an X-ray diffraction study of coprecipitated chromia-alumina catalysts, in which the chromium concentration varies between 0 and 37 w, %. At each chromium concentration the precipitate was studied in the washed and dried state, as well as after calcination at 500, 750, and 1400°C. X-ray diffraction patterns are presented to show the phase transformations and sample inhomogenelties that were observed.


Sign in / Sign up

Export Citation Format

Share Document