Electro-Optical Systems for Dynamic Display of X-ray Diffraction Images

1970 ◽  
Vol 14 ◽  
pp. 311-337 ◽  
Author(s):  
Robert E. Green

AbstractVarious electro-optical systems have been reported which permit intensification of X-ray diffraction patterns and thus a decrease in exposure time for recording and display of the X-ray images. Prior to 1966, all such electro-optical systems incorporated a large format X-ray image intensifier of the same type as conventionally used for medical and industrial fluoroscopy. In the past four years, a number of different systems have been reported which are superior to those developed prior to 1966. These systems may be grouped into two main categories, the large format variety for Laue diffraction applications, and the small format variety for topographic applications.The purpose of the present paper is to describe the particular characteristics of both the large format and small format systems and to discuss the advantages and disadvantages associated with each type. Based on actual performance characteristics it will be shown that:1.A multiple stage image intensifier system coupled to an external fluorescent screen is the most sensitive and only truly instantaneous system; it can be used with very weak X-ray intensities, the resolution is currently limited by the external fluorescent screen to 42μ the system is extremely versatile in that it can be used both for large format recording of Laue patterns as well as for small format recording of X-ray topographe; the system has a very long lifetime since nothing is altered by X-radiation.2.An X-ray sensitive vidicon is the least sensitive; it must be used with extremely high intensity X-rays or long exposure times; the resolution is the highest at approximately 15μ and is limited by either bandwidth of the television system, the thickness of the X-ray sensitive target or the size of the electron beam at the target; due to the small size of the X-ray sensitive target the system can only be used for small format recording of X-ray topographs; the lifetime of the system is short since X-radiation causes degradation of the target.

1961 ◽  
Vol 5 ◽  
pp. 1-12
Author(s):  
Andre Guinier

AbstractAlthough no revolutionary advance has been achieved in the last two decades, X-ray diffraction is not to be considered as a quiescent field of physics. Actually many improvements, in theory as well as in experiment, slight by themselves but very numerous, have considerably increased the efficiency of techniques such as the determination of crystal structures, the analysis of crystalline phases, and the applications of X-rays to various problems of the physics of solids. Only the two last points will be dealt with here:1.Crystalline phase analysis. The development of a satisfactory atlas of powder patterns has been too slow, and the data are not yet complete and precise enough to permit a rational utilization of the modern diffractometers. A very interesting new approach is the systematic indexing of the powder patterns which would be possible with computers. In the near future, anyone should be able to analyze a powder at any temperature as an easy routine experiment.2.The study of lattice defects. X-ray techniques are now in competition with electron microscopy, the development of which has been very successful in recent years. Now we have a better understanding of the possibilities of both techniques. X-rays give better results to determine the statistics of an extended disorder even if it is slight (e.g., degrees of order in a solid solution), and the microscope is more powerful for the detection of large but rare defects (e.g., dislocations).


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


1998 ◽  
Vol 5 (3) ◽  
pp. 967-968 ◽  
Author(s):  
Keiichi Hirano ◽  
Atsushi Momose

The phase shift of forward-diffracted X-rays by a perfect crystal is discussed on the basis of the dynamical theory of X-ray diffraction. By means of a triple Laue-case X-ray interferometer, the phase shift of forward-diffracted X-rays by a silicon crystal in the Bragg geometry was investigated.


Author(s):  
Matthew Wilding ◽  
Colin Scott ◽  
Thomas S. Peat ◽  
Janet Newman

The NAD-dependent malonate-semialdehyde dehydrogenase KES23460 fromPseudomonassp. strain AAC makes up half of a bicistronic operon responsible for β-alanine catabolism to produce acetyl-CoA. The KES23460 protein has been heterologously expressed, purified and used to generate crystals suitable for X-ray diffraction studies. The crystals belonged to space groupP212121and diffracted X-rays to beyond 3 Å resolution using the microfocus beamline of the Australian Synchrotron. The structure was solved using molecular replacement, with a monomer from PDB entry 4zz7 as the search model.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 273 ◽  
Author(s):  
José Brandão-Neto ◽  
Leonardo Bernasconi

Macromolecular crystallography at cryogenic temperatures has so far provided the majority of the experimental evidence that underpins the determination of the atomic structures of proteins and other biomolecular assemblies by means of single crystal X-ray diffraction experiments. One of the core limitations of the current methods is that crystal samples degrade as they are subject to X-rays, and two broad groups of effects are observed: global and specific damage. While the currently successful approach is to operate outside the range where global damage is observed, specific damage is not well understood and may lead to poor interpretation of the chemistry and biology of the system under study. In this work, we present a phenomenological model in which specific damage is understood as the result of a single process, the steady excitation of crystal electrons caused by X-ray absorption, which acts as a trigger for the bulk effects that manifest themselves in the form of global damage and obscure the interpretation of chemical information from XFEL and synchrotron structural research.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 311 ◽  
Author(s):  
Carlotta Giacobbe ◽  
Jonathan Wright ◽  
Dario Di Giuseppe ◽  
Alessandro Zoboli ◽  
Mauro Zapparoli ◽  
...  

Nowadays, due to the adverse health effects associated with exposure to asbestos, its removal and thermal inertization has become one of the most promising ways for reducing waste risk management. Despite all the advances in structure analysis of fibers and characterization, some problems still remain that are very hard to solve. One challenge is the structure analysis of natural micro- and nano-crystalline samples, which do not form crystals large enough for single-crystal X-ray diffraction (SC-XRD), and their analysis is often hampered by reflection overlap and the coexistence of multiple fibres linked together. In this paper, we have used nano-focused synchrotron X-rays to refine the crystal structure of a micrometric tremolite fibres from Val d’Ala, Turin (Italy) after various heat treatment. The structure of the original fibre and after heating to 800 °C show minor differences, while the fibre that was heated at 1000 °C is recrystallized into pyroxene phases and cristobalite.


2014 ◽  
Vol 70 (6) ◽  
pp. 572-582
Author(s):  
Hsin-Yi Chen ◽  
Mau-Sen Chiu ◽  
Chia-Hung Chu ◽  
Shih-Lin Chang

An algorithm is developed based on the dynamical theory of X-ray diffraction for calculating the profiles of the diffracted beam,i.e.the diagrams of the intensity distributionversus2θ when a crystal is fixed at an angle of its maximum diffracted intensity. Similar to Fraunhofer (far-field) diffraction for a single-slit case, in the proposed algorithm the diffracted beam from one atomic layer excited by X-rays is described by the composition of (N+ 1) coherent point oscillators in the crystal. The amplitude and the initial phase of the electric field for each oscillator can be calculated based on the dynamical theory with given boundary conditions. This algorithm not only gives diffraction profiles but also provides the contribution of the excitation of modes when extremely asymmetric diffraction is involved in the diffraction process. Examples such as extremely asymmetric two-beam surface diffraction and three-beam surface diffraction are presented and discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document