The Analysis of Oil Additives Using Fundamental Influence Coefficients

1981 ◽  
Vol 25 ◽  
pp. 177-180
Author(s):  
H. M. West

One of the most important applications o£ XRF in the oil industry has been in the analysis of oil additives which range from Mg to Ba. In such a low atomic number, hydrocarbon matrix, small variations in the additives cause pronounced changes in the average atomic number of the matrix and hence give rise to strong interelement effects. In recent years a number of mathematical methods have been developed to correct the measured X-ray intensity of the analyte litie for these considerable effects. This paper describes a method for the determination of Zn,Ba,Ca,CI,S,P and Mg in oil additives using a concentration based correction model in which influence coefficients (alphas) are applied.

Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


2021 ◽  
Vol 27 (1) ◽  
pp. 74-89
Author(s):  
Nicholas W.M. Ritchie

AbstractThis, the second in a series of articles present a new framework for considering the computation of uncertainty in electron excited X-ray microanalysis measurements, will discuss matrix correction. The framework presented in the first article will be applied to the matrix correction model called “Pouchou and Pichoir's Simplified Model” or simply “XPP.” This uncertainty calculation will consider the influence of beam energy, take-off angle, mass absorption coefficient, surface roughness, and other parameters. Since uncertainty calculations and measurement optimization are so intimately related, it also provides a starting point for optimizing accuracy through choice of measurement design.


2003 ◽  
Vol 321 (2-3) ◽  
pp. 221-232 ◽  
Author(s):  
A Yilmazbayhan ◽  
O Delaire ◽  
A.T Motta ◽  
R.C Birtcher ◽  
J.M Maser ◽  
...  

2021 ◽  
pp. 124-131
Author(s):  
A.V. Alekseev ◽  
◽  
G.V. Orlov ◽  
P.S. Petrov ◽  
A.V. Slavin ◽  
...  

The determination of the elements Cu, Ni, Sb, Bi, Pb, Zn and Fe in the tin-based solder VPr35, as well as the elements Sn, Ni, Sb, Bi and In in the lead-based VPr40 solder by the method of х-ray fluorescence spectroscopy has been carried out. The calibration dependences are corrected taking into account the superposition of signals from interfering elements on the analytical signal and changes in intensity caused by inter-element influences in the matrix. The analysis was carried out by the method of fundamental parameters without using standard samples. The correctness of the results obtained was confirmed by their comparative analysis by atomic emission spectroscopy and high-resolution mass spectrometry with a glow discharge.


1991 ◽  
Vol 35 (B) ◽  
pp. 1205-1209
Author(s):  
I. A. Kondurov ◽  
P. A. Sushkov ◽  
T. M. Tjukavina ◽  
G. I. Shulyak

In multielement EDXRF analysis of very complex unknowns, some problems in data evaluation may be simplified if one can take into account a priori information on the properties of the incident and detected radiations, and also available data on the matrix of the sample. The number of variables can be drastically shortened in the LSM procedures in this case. One of the best examples of complex unknowns is the determination of the rare earth element content of ores, and most recently in samples of high temperature superconductors (HiTc).


1968 ◽  
Vol 12 ◽  
pp. 546-562
Author(s):  
R. Tertian

AbstractThe double dilution method has many important advantages. For any element to be determined, let us say A, It enables us to control or calculate the matrix factor (sum of the absorption end enhancement effects) for the sample being Investigated towards A radiation, and it furnishes corrected Intensities which are strictly proportional to A concentration. Thus the results are exact, whatever the general composition of the sample, their accuracy depending only on the quality of measurement and preparation. Another major practical advantage is that the method does not require systematic calibration but only a few permanent standards consisting of a pure compound or of an accurately known sample.The procedure has been tested successfully for accurate determination of rare earth elements using, for solid materials such as ores and oxide mixtures, the borax fusion technique. It also can be readily applied to liquids. All the rare earth elements can be titrated by that method, as well as yttrium, thorium and, if necessary, all the elements relevant to X-ray fluorescence analysis. The concentration range considered for solids is of one comprised between 0.5 and 100 % and, with a lesser accuracy, between 0.1 and 0-5 % Examples are given relative to the analysis of various ores. Finally it rcust be pointed out that the method is universal and applies to the analysis of every solid, especially ores, provided that they can be converted to solid or liquid solutions. It appears that most industrial analyses can be worked on In this way.


1963 ◽  
Vol 7 ◽  
pp. 542-554
Author(s):  
Frank L. Chan

AbstractRecently, interest in the determination of selenium in trace amounts has been greatly intensified because of the nutritional aspects of this element. It has been reported that selenium in the amount of 13 μg in the form of sodium selenite in 100 g of feed has an effect similar to that of vitamin E. In the field of semiconductors, the detection and determination of trace amounts of selenium in arsenic, antimony, and small single crystals of solid solution of cadmium selenide and sulfide are of considerable importance in semiconductor performance.In the Aerospace Research Laboratories, 4,5 diamino-6-tbiopyi-imidine has been successfully adopted as a reagent for the spectrophotometric determination of selenium. The reaction of 4,5 diamino-6-thiopyrimidine and tetxavalent selenium produces a yellow color with the formation of elemental selenium. It is possible to determine elemental selenium by collecting it in a thin layer. The selenium deposited in this layer may then be determined by an X-ray fluorescence method. A procedure of this nature has the advantage of eliminating the matrix effects commonly encountered in X-ray fluorescence. Furthermore, the slow generation of selenium affords a convenient means of detection and confirmation of this element by the use of X-ray diffraction procedures. By this technique selenium is first converted to its tetravalent state and is then reacted with 4,5 diamino-6-thiopyrimidine. On standing, the selenium is reduced to a red precipitate of elemental selenium which can be dissolved in carbon disulfide. Finally, the selenium can be converted into its hexagonal structure by annealing at 205-207°C.


2018 ◽  
Vol 788 ◽  
pp. 108-113
Author(s):  
Anna Trubaca-Boginska ◽  
Andris Actins ◽  
Ruta Švinka ◽  
Visvaldis Švinka

Determining the quantitative composition of clay samples with X-ray fluorescent spectrometry is complicated because of the matrix effect, in which any element can increase or decrease the analytical signals of other elements. In order to predict the properties of clays, it is essential to know their precise chemical composition. Therefore, using the standard addition method was determined calibration and empirical influence coefficients, as well as the true composition of the elements. Farther, these coefficients were used to correct the matrix effect and develop a multi-parameter optimization method. It was determined that in clay samples, consisting of Si, Al, Fe, K, Mg, Ca, Na and Ti oxide formula units, the most significant contribution for matrix effect correction calculations was from the calibration coefficients. Moreover, the largest deviation from the X-ray fluorescent data and true values was determined in the MgO and Na2O cases. In this study was established, that the developed multi-parameter method can be successfully applied to determine the quantitative chemical composition of clay samples of similar compositions.


Computed tomography is a method for obtaining a series of radiographic pictures of contiguous slices through a solid object such as the human body. Each picture is computed from a set of X-ray transmission measurements and represents the distribution of X-ray attenuation in the slice. The high sensitivity of the method to changes in both density and atomic number has resulted in the development of new diagnostic methods in medicine. The limitations of the method are discussed in terms of two particular kinds of application. First, those applications in which a very precise determination of density or atomic number is required, but at low spatial resolution; an example would be the determination of the uniformity of mixture of plastics or metals. The second kind of application is that requiring high spatial resolution as in the detection of cracks and the visualization of internal structures in complicated objects.


Sign in / Sign up

Export Citation Format

Share Document