Disposable Heater Strips for High Temperature Powder Diffractometer Furnaces

1992 ◽  
Vol 36 ◽  
pp. 433-437
Author(s):  
H.W. King ◽  
E.A. Payzant ◽  
M.B. Stanley

AbstractCommercial resistance heating and thermocouple materials specified for use in air at temperatures up to 1200°C were examined as possible alternatives to Pt-Rh for use as heater strips in high temperature x-ray diffractometer furnaces. Tests in air at 1150°C, showed that Chromel oxidized excessively, Nichrome oxidized moderately, while Kanthal was very slightly oxidized. Nichrome and Kanthal strips were sufficiently ductile to fabricate into strip heaters. The thickness of the Kanthal strip had to be reduced to 0.020 mm to match its resistance to the power and temperature control software of the high temperature diffractometer. Heater strips made from Nichrome proved effective, in terms of resistance to grain growth and surface degradation by adhesive liquid phases, at temperatures up to 1000°C, while Kanthal was effective up to 1150°C. The relatively low costs of these materials also make them viable as disposable heaters for use with chemically reactive or strongly adherent materials.

1962 ◽  
Vol 6 ◽  
pp. 250-261 ◽  
Author(s):  
E. W. Franklin ◽  
S. M. Lang

AbstractThe adaptation of high-frequency heating techniques to a vertical diffractometer will be discussed. The heating system functions as a. portion of an integrated system that provides a wide range of atmospheric and temperature control. Some of the design problems and their solutions and operating characteristics of the system will be described. The useful temperature range is from less than 200°C to greater than 1600°C, depending upon the fur-nace atmosphere and susceptors used. Gaseous pressures may be from vacuo of about 10−6 mm to about 30 psia; and, the sample may be heated in oxidizing, neutral, or reducing atmospheres.


1990 ◽  
Vol 34 ◽  
pp. 459-463
Author(s):  
Robert W. Green

High-temperature x-ray diffraction has many applications. Applied to polymeric materials it is a useful tool for investigating changes in crystallinity, providing insight into molding and extrusion problems, and for examining solvent-resistancy problems. An example of the increasing crystailine character of a polymer as a function of temperature can be seen in figure 1. Diffraction scans at 25°C, 100°C, 150°C, and 200°C clearly show the increasing crystalline character of the potymer with an increase in temperature. Control of sample temperature for a polymer is very important, when analyzing under air, because a momentary overshoot in temperature may lead to the sample igniting. High-temperature investigations of polymers are also subject to the problem of the sample warping and bowing.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 369-374 ◽  
Author(s):  
D. Garipoli ◽  
P. Bergese ◽  
E. Bontempi ◽  
M. Minicucci ◽  
A. Di Cicco ◽  
...  

2005 ◽  
Vol 47 (5) ◽  
pp. 294-298
Author(s):  
Michael H. Ott ◽  
Andreas Kämpfe ◽  
Detlef Löhe

Author(s):  
Parisa Sadeghpour ◽  
Mohammad Haghighi ◽  
Mehrdad Esmaeili

Aim and Objective: Effect of two different modification methods for introducing Ni into ZSM-5 framework was investigated under high temperature synthesis conditions. The nickel successfully introduced into the MFI structures at different crystallization conditions to enhance the physicochemical properties and catalytic performance. Materials and Methods: A series of impregnated Ni/ZSM-5 and isomorphous substituted NiZSM-5 nanostructure catalysts were prepared hydrothermally at different high temperatures and within short times. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray (EDX), Brunner, Emmett and Teller-Barrett, Joyner and Halenda (BET-BJH), Fourier transform infrared (FTIR) and Temperature-programmed desorption of ammonia (TPDNH3) were applied to investigate the physicochemical properties. Results: Although all the catalysts showed pure silica MFI–type nanosheets and coffin-like morphology, using the isomorphous substitution for Ni incorporation into the ZSM-5 framework led to the formation of materials with lower crystallinity, higher pore volume and stronger acidity compared to using impregnation method. Moreover, it was found that raising the hydrothermal temperature increased the crystallinity and enhanced more uniform incorporation of Ni atoms in the crystalline structure of catalysts. TPD-NH3 analysis demonstrated that high crystallization temperature and short crystallization time of NiZSM-5(350-0.5) resulted in fewer weak acid sites and medium acid strength. The MTO catalytic performance was tested in a fixed bed reactor at 460ºC and GHSV=10500 cm3 /gcat.h. A slightly different reaction pathway was proposed for the production of light olefins over impregnated Ni/ZSM-5 catalysts based on the role of NiO species. The enhanced methanol conversion for isomorphous substituted NiZSM-5 catalysts could be related to the most accessible active sites located inside the pores. Conclusion: The impregnated Ni/ZSM-5 catalyst prepared at low hydrothermal temperature showed the best catalytic performance, while the isomorphous substituted NiZSM-5 prepared at high temperature was found to be the active molecular sieve regarding the stability performance.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


1985 ◽  
Vol 85 ◽  
pp. 365-368
Author(s):  
S. Ibadov

AbstractThe intensity of solar X-radiation scattered by a comet is calculated and compared to the proper X-radiation of the comet due to impacts of cometary and interplanetary dust particles. Detection of X-radiation of dusty comets at small heliocentric distances (R ≤ 1 a.u.) is found to be an indicator of high-temperature plasma generation as result of grain collisions.


1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


Sign in / Sign up

Export Citation Format

Share Document