scholarly journals Design Studies of Ultra-Wideband Microstrip Antennas with a Small Capacitive Feed

2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
Veeresh G. Kasabegoudar ◽  
Dibyant S. Upadhyay ◽  
K. J. Vinoy

The design of an ultra-wideband microstrip patch antenna with a small coplanar capacitive feed strip is presented. The proposed rectangular patch antenna provides an impedance bandwidth of nearly 50%, and has stable radiation patterns for almost all frequencies in the operational band. Results presented here show that such wide bandwidths are also possible for triangular and semiellipse geometries with a similar feed arrangement. The proposed feed is a very small strip placed very close to the radiator on a substrate above the ground plane. Shape of the feed strip can also be different, so long as the area is not changed. Experimental results agree with the simulated results. Effects of key design parameters such as the air gap between the substrate and the ground plane, the distance between radiator patch and feed strip, and the dimensions of the feed strip on the input characteristics of the antenna have been investigated and discussed. As demonstrated here, the proposed antenna can be redesigned for any frequency in the L-, S-, C-, or X-band. A design criterion for the air gap has been empirically obtained to enable maximum antenna bandwidth for all these operational frequencies.

In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yongjiu Li ◽  
Long Li ◽  
Xiwang Dai ◽  
Cheng Zhu ◽  
Feifei Huo ◽  
...  

A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC) technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (aboutλ/25 at 2.45 GHz) due to the shorted pin. The package is mounted on a 44 × 44 mm2ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth(S11< -10 dB)is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.


2020 ◽  
Vol 8 (5) ◽  
pp. 3988-3990

In this paper, A coplanar waveguide (CPW) ultra-wideband(UWB) antenna is designed, analyzed and simulated by computer simulation technology(CST). The proposed antenna is fabricated on FR-4 dielectric substrate. A microstrip feed line is used to excite the antenna.The ground plane is slotted to improve the impedance bandwidth (BW). Here, a rectangular patch is used as radiator and two corners out of four are truncated to improve impedance matching and UWB characterization.This antenna satisfies UWB characteristics like VSWR<2, Return loss(S11)<-10 dB,Gain<5dB and the antenna is operating within the frequency range of 1.59 to 11.87 GHz range which covers whole ultra wideband i.e. 3.1 to 10.6 GHz range.


This research article gives a detailed insight of the design, simulation of a compact circular shaped microstrip patch antenna that is fed using a coplanar waveguide feed (CPW for practical wireless communication applications). The antenna is typically designed for Ultra wideband (1.46-6GHz), Bluetooth (2.4GHz), ZIGBEE (2.4GHz), WLAN (5.15- 5.35 GHz and 5.725- 5.825), Wi-Fi (2.4-2.485GHz) and HIPERLAN-2(5.15 - 5.35 GHz and 5.470 -5.725GHz) wireless applications with stop band characteristics for the H (partial C band). The proposed antenna has an overall packaged structure dimensions of 78 x75 x1.605 mm3 and is fabricated on FR4 substrate as a circular patch antenna with a coplanar ground .The commercially available laminate FR4 substrate that is used has a dielectric constant of 4.4, height of 1.6mm and a loss tangent of 0.0024.The prospective antenna shows a simulated impedance bandwidth of 4.54 GHz. The coplanar waveguide feeding used with this antenna helps in improving antenna performance in terms of its impedance bandwidth as this geometry helps in creating multiple current loops at the antenna structure, thereby exciting nearby frequencies that merge to show a broadband of operation. The antenna’s operational bandwidth is also improved by the concept of modified ground, in which triangular and rectangular shapes are added symmetrically on both sides of ground plane that provide a better fringing effect and hence an improved bandwidth.


2012 ◽  
Vol 1 (2) ◽  
pp. 97-106
Author(s):  
Sanyog Rawat ◽  
K K Sharma

In this paper a new geometry of circularly polarized patch antenna is proposed with improved bandwidth. The radiation performance of proposed patch antenna is investigated using IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna. The simulated return loss, axial ratio and impedance with frequency for the proposed antenna are reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slots, the impedance bandwidth can be enhanced upto 10.15% as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.DOI: 10.18495/comengapp.12.097106


2019 ◽  
Vol 12 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Sachin Kumar ◽  
Gwan Hui Lee ◽  
Dong Hwi Kim ◽  
Wahab Mohyuddin ◽  
Hyun Chul Choi ◽  
...  

AbstractA new design method of an ultra-wideband circularly-polarized planar multiple-input-multiple-output (MIMO) antenna is presented in this paper. The proposed MIMO antenna consists of four unit cell antennas, being comprised of a microstrip feed line and a square slotted ground plane. In the proposed unit cell design, a circular stub is protruded from the ground plane strip for achieving circular polarization. The unit cell of the MIMO antenna is optimized by adjusting design parameters. The compact four-port MIMO antenna prototype is designed on the FR4 substrate with the overall dimensions of 45 × 45 × 1.6 mm3. The proposed four-port MIMO antenna design provides an impedance bandwidth (S11 < −10 dB) of 112% (3.1–11 GHz) and a 3 dB axial ratio bandwidth of 36% (4.8–6.9 GHz). The performance of the fabricated MIMO antenna shows good agreement between the EM simulation and measurement results.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Jan Eichler ◽  
Pavel Hazdra ◽  
Miloslav Capek ◽  
Milos Mazanek

The chosen rectangular and fractal microstrip patch antennas above an infinite ground plane are analyzed by the theory of characteristic modes. The resonant frequencies and radiationQare evaluated. A novel method by Vandenbosch for rigorous evaluation of the radiationQis employed for modal currents on a Rao-Wilton-Glisson (RWG) mesh. It is found that the resonant frequency of a rectangular patch antenna with a dominant mode presents quite complicated behaviour including having a minimum at a specific height. Similarly, as predicted from the simple wire model, the radiationQexhibits a minimum too. It is observed that the presence of out-of-phase currents flowing along the patch antenna leads to a significant increase of theQfactor.


2021 ◽  
Author(s):  
syed zeeshan Ali ◽  
Ikrame E Khuda ◽  
Kamran Raza ◽  
Mansoor Ebrahim

Abstract In this paper, using in-depth simulations and measurements, a simple and compact design is engineered for making a circular ring microstrip patch antenna radiating element which is suitable for different ultra wide band(UWB) applications. This design approach is different because it has not utilized the usual method of using a set of electromagnetic equations and calculations to make the radiating antenna. Measurements and simulations were performed on Microwave CST. Using this measurement engineering approach, novelty of proposed antenna structure is obtained by making the required changes in the ground plane. The measurements showed that truncating the ground plane by a square shape structure of 2.5mm by 2.5mm size at the feed point was practically significant to provide an impedance bandwidth (\({S}_{11}cript>\)) ranging from 2.75 GHz to 32.035 GHz with a VSWR which is less than 2. For this entire bandwidth the directivity has shown a variation from 0.8 dBi to 7.9 dBi. The compact size (33mm x28mm x1.57mm), low design complexity, very high bandwidth, good directivity and satisfying VSWR has made this antenna unique among all previously presented UWB antennas.


This paper presents an ultra wideband(UWB) antenna which is in rectangular shape is designed and analyzed by Microwave Studio Computer Simulation Technology(MS CST).The antenna uses FR-4 substrate. The rectangular patch which is excited by micro strip line is printed on the top of the substrate and a partial ground plane is printed on the other side. The basic structure of antenna produces ultra-wideband characteristics. But these characteristics can further be improved by cutting the lower left corner of the patch as stair case and observed the simulated results like return loss(S11), voltage standing wave ratio(VSWR), gain and bandwidth(BW).


Sign in / Sign up

Export Citation Format

Share Document