scholarly journals Thermal and Isothermal Methods in Development of Sustained Release Dosage Forms of Ketorolac Tromethamine

2008 ◽  
Vol 5 (2) ◽  
pp. 316-322 ◽  
Author(s):  
Dimple Chopra ◽  
Vivek Ranjan Sinha ◽  
Manjeet Singh

Differential scanning calorimetry (DSC) is a rapid and convenient and conclusive method of screening drug-polymer blend during preformulation studies as it allows polymer incompatibility to be established instantaneously. Various batches of matrix tablets of ketorolac tromethamine (KTM) with a series of compatible polymers were prepared. Batches of tablets which gave desired sustained release profile were subjected to stability testing according to ICH guidelines. The analysis for drug content was done using high performance liquid chromatography (HPLC) method. The results revealed that there was no statistically significant change in drug content after storage of matrix tablets at elevated temperature of 40°C and 75% relative humidity. From our study we conclude that with careful selection of different polymers and their combinations, a stable sustained release oral dosage form of ketorolac tromethamine can be achieved.

Author(s):  
RASHAD M. KAOUD ◽  
ALHAMZA HOSHI KHALAF ◽  
JAMAL ALYOUSSEF ALKRAD

Objective: This study was designed to evaluate the use of bentonite in the formulation of sustained-release tablets containing alogliptin benzoate after granulation. Methods: Bentonite was used for preparing tablets after granulation. The prepared tablets were tested for their pharmacopeial requirements. Further, a high-performance liquid chromatography (HPLC) method was developed to assess the release pattern of alogliptin from the tablets. Besides, differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (XRD) were used for evaluating the compatibility the drugs and bentonite. Finally, the release from the tablets was tested using the paddle apparatus. Results: The FTIR and DSC did not show any interaction between the drug and the excipient in contrast to the powder-XRD pattern, which showed a shift for montmorillonite crystal peak. This shift was interpreted by increasing in the spacing of the crystalline structure of montmorillonite. However, the results of pharmacopeial tests showed that the prepared tablets comply with the compendial requirements, In addition, the release profiles of these tablets with aid of hydroxypropyl methylcellulose (HPMC) as a binder revealed a sustained release of alogliptin. Furthermore, the fitting of release data showed that the release from these tablets followed Fickian diffusion that alogliptin released by diffusion from bentonite gel matrix. Conclusion: Bentonite was successfully used for producing sustained-release tablets of alogliptin. However, maintaining the crystal structure of montmorillonite was essential for building the gel structure of bentonite and releasing the drug in a controlled manner.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 32-37
Author(s):  
Vijaya Lakshmi Marella ◽  
Chaitanya S. N ◽  

A selective and sensitive reverse phase High Performance Liquid Chromatographic method has been developed and validated for the estimation of lornoxicam in bulk, pharmaceutical dosage forms and in dissolution samples. The analysis was performed isocratically on an Inertsil column (250* 4.6 mm, 5 µm) using a mass spectrometric compatible mobile phase of 10 mM ammonium acetate: acetonitrile (50:50 V/V) at a flow rate of 1 mL/min.The detection wavelength was 290 nm. The retention time was found to be 4.573 min for lornoxicam. The linearity of the method has been satisfied with Beer Lambert’s law in the concentration range of 5-25 µg/mL with a correlation coefficient of 0.9988. The mean recoveries assessed for lornoxicam were in the range of 100.39-101.86 %, indicating good accuracy of the method. The limit of detection and limit of quantification were found to be 0.03 and 0.11 µg/mL, respectively. The developed method has been statistically validated in accordance with ICH guidelines and found to be mass spectrometric compatible, simple, precise, and accurate with the prescribed values. Thus, the proposed method was successfully applied for the estimation of lornoxicam in routine quality control analysis of bulk, formulations and in dissolution samples.


2021 ◽  
Vol 10 (5) ◽  
pp. 131-136
Author(s):  
Asim pasha ◽  
C N Somashekhar

The aim of the present work was to develop sustained release Lornoxicam matrix tablets with polymers like HPMC K15M, Ethyl cellulose, and Crospovidone as carriers in varying quantities. Direct compression was used to make matrix tablets. Various assessment parameters, such as hardness, friability, thickness, percent drug content, weight variation, and so on, were applied to the prepared formulations. In vitro dissolution studies were carried out for 24 hrs. The tablets were subjected to in-vitro drug release in (pH 1.2) for first 2 hrs. Then followed by (pH 6.8) phosphate buffer for next 22 hrs. And the results showed that among the six formulations FL3 showed good dissolution profile to control the drug release respectively. The drug and polymer compatibility were tested using FT-IR spectroscopy, which revealed that the drug was compatible with all polymers. It is also required to design an appropriate prolonged release formulation for Lornoxicam in order to maintain the drug's release. Hence by using the compatible polymers sustained release tablets were formulated and subjected for various types of evaluation parameters like friability, hardness, drug content and dissolution behaviour. Finally, the findings reveal that the prepared sustained release matrix tablets of lornoxicam have improved efficacy and patient compliance.


Author(s):  
Sireesha D ◽  
Sai Lakshmi E ◽  
Sravya E ◽  
Vasudha Bakshi

A new simple, rapid, specific, accurate, precise and novel Reverse Phase High Performance Liquid Chromatography (RP-HPLC) method has been developed for the estimation of Sitagliptin Phosphate in the pharmaceutical dosage form. The chromatographic separation for Sitagliptin was achieved with mobile phase containing methanol, Thermoscientific C18 column, (250x4.6 particle size of 5μ) at room temperature and UV detection at 248 nm. The compounds were eluted in the isocratic mode at a flow rate of 1ml/min. The retention time of Sitagliptin was 1.91min. The above method was validated in terms of linearity, accuracy, precision, LOD and LOQ in accordance with ICH guidelines.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (06) ◽  
pp. 63-68
Author(s):  
R. Raut ◽  
◽  
A. Patil ◽  
V. K Munipalli ◽  
M. Patel ◽  
...  

A simple precise and rapid Reverse Phase High Performance Liquid Chromatographic (RP-HPLC) method has been developed for quantitative determination of Regorafenib in tablet dosage form. In this method Hypersil Gold (C18, 150mm× 4.6mm id, 3μ) column with mobile phase consisting of Trifluoroacetic acid (0.2% v/v) and Acetonitrile in the ratio of (50: 50 v/v) at 400C in an isocratic mode was used. The detection was carried out at 260 nm and 20μL injection volume was selected with the flow rate 1mL/min. The linearity range of Regorafenib shows concentration between 5-200 μg/mL. The regression coefficient obtained was 0.999. Retention time of Regorafenib was found to be 6.49 minutes. Acetonitrile and Water in the ratio of (3:1) was used as a diluent. The method was validated as per ICH guidelines and is simple, fast, accurate, precise and can be applied for routine quality control analysis of Regorafenib in tablet dosage form.


Author(s):  
Radha Rani Earle ◽  
Kiran Kumar Bandaru ◽  
Lakshmi Usha A

Objective: Metformin hydrochloride is a biguanide antihyperglycemic agent which is a generally recommended first-line drug for the treatment of diabetes mellitus (Type II). The purpose of this investigation is to prepare sustained release matrix granules of metformin hydrochloride which are coated to extend the drug release over a longer time period.Methods: Metformin hydrochloride granules were prepared by mixing all the dry powders in a V-cone blender and wetting the powder mix with aqueous solution of hydroxypropyl methyl cellulose K100. The prepared granules (MG1-MG5) were investigated for drug release. The batch of granules which exhibited extended release for up to 4 h was coated in a standard coating pan with blends of Eudragit RS and RL to further enhance release period. These were marked as coated metformin granules (CMG3) and CMG4 which were later filled into empty capsules. The granules were characterized for micromeritic properties, percentage yield, particle size distribution, percentage of drug content, and in vitro release of the drug.Results: All the formulations showed percentage yield in the range of 77.66–82.86% and drug content in the range of 78.23–96.62%. CMG3 showed drug release of 97.02% for 12 h. Fourier-transform infrared spectroscopy and differential scanning calorimetry studies indicated that no possible interaction existed between the drug and the polymers used. Scanning electron microscopy images revealed that the granules were spherical in shape with smooth surface and completely covered with a coating of polymer. Kinetic analysis of drug release confirmed that drug release followed zero-order kinetics where it is independent of the concentration.Conclusion: From the results, it was analyzed that design of coated granules employing the polymers used in the present work can produce a sustained release of the drug over a period of 12 h.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Sadana Gangishetty ◽  
Surajpal Verma

The present work describes a simple, rapid, and reproducible reverse phase high performance liquid chromatography (RP-HPLC) method for the simultaneous estimation of clarithromycin (CLA) and paracetamol (PCM). C18 column (Kromasil ODS, 5 µm, 250 × 4.6 mm) and a mobile phase containing phosphate buffer (0.05 M) along with 1-octane sulphonic acid sodium salt monohydrate (0.005 M) adjusted to pH 3.2: acetonitrile (50 : 50 v/v) mixture was used for the separation and quantification. The flow rate was 1.0 mL/min and the eluents were detected by UV detector at 205 nm. The retention times were found to be 2.21 and 3.73 mins, respectively. The developed method was validated according to ICH guidelines Q2 (R1) and found to be linear within the range of 75–175 µg/mL for both drugs. The developed method was applied successfully for assay of clarithromycin and paracetamol in their combined in-house developed dosage forms and in vitro dissolution studies.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Sharif Hasan ◽  
Ruhul Kayesh ◽  
Farida Begum ◽  
S. M. Abdur Rahman

The aim of our current research was to synthesize some transition metal complexes of Naproxen, determine their physical properties, and examine their relative stability under various conditions. Characterizations of these complexes were done by 1H-NMR, Differential Scanning Calorimetry (DSC), FT-IR, HPLC, and scanning electron microscope (SEM). Complexes were subjected to acidic, basic, and aqueous hydrolysis as well as oxidation, reduction, and thermal degradation. Also the reversed phase high-performance liquid chromatography (RP-HPLC) method of Naproxen outlined in USP was verified for the Naproxen-metal complexes, with respect to accuracy, precision, solution stability, robustness, and system suitability. The melting points of the complexes were higher than that of the parent drug molecule suggesting their thermal stability. In forced degradation study, complexes were found more stable than the Naproxen itself in all conditions: acidic, basic, oxidation, and reduction media. All the HPLC verification parameters were found within the acceptable value. Therefore, it can be concluded from the study that the metal complexes of Naproxen can be more stable drug entity and offer better efficacy and longer shelf life than the parent Naproxen.


2019 ◽  
Vol 22 (3) ◽  
pp. 222-226
Author(s):  
Khawla H. Rasheed

This study has been performed to compare the compartmental modeling of two types of extravascular routes, sustained-release (SR) oral dosage forms and intramuscular (IM) injection. Twenty healthy volunteers received a single dose of 100 mg Diclofenac Sodium (DS) sustained-release tablet, then 75 mg DS Intramuscular injection after two weeks washout period. The concentrations of DS in plasma were measured using reverse-phase high-performance liquid chromatography (HPLC). The data analyzed using compartmental modeling, with single time-variant input and output. Primary kinetic parameters for both formulations, ( , , ) and other kinetic parameters were evaluated. The result shows that the IM injection needs a shorter time to reach the maximum concentration with convergent bioavailability to SR oral dosage forms, in another hand the data of IM injection fitted to single-compartment model with a correlation coefficient of 0.93 and the data of SR tablet fitted to two-compartment models with a correlation coefficient of 0.97.


2021 ◽  
Vol 6 (3) ◽  
pp. 136-142
Author(s):  
K Swamy Sekhar ◽  
Ch Venkata kishore ◽  
V Tejeswara Rao ◽  
K. Raghu Babu

A validated HPLC method was developed for the determination of Busulfan (BUS) in pharmaceutical formulation.It is a new simple, accurate, precise and reproducible HPLC method has been developed for the estimation of Busulfan (1,4-butanediol dimethanesulfonate) in its inject able dosage.The method developed in High Performance Liquid Chromatographic method using suitable column (YMC Pack ODS-A (150 x 4.6) mm, 3µm). All the components of the system are controlled using SCL-10Avp System Controller. Data acquisition was done using LC Solutions software.The method was validated as per the ICH guidelines. Thus, the proposed HPLC method can be successfully applied for the routine quality control analysis of formulations. The method developed is simple and is better than the methods reported in the literature and the method is capable to give a good detector response, the recovery calculated was within the range of 98% to 102% of the specification limits.


Sign in / Sign up

Export Citation Format

Share Document