scholarly journals Production of Cellulosic Polymers from Agricultural Wastes

2008 ◽  
Vol 5 (1) ◽  
pp. 81-85 ◽  
Author(s):  
A. U. Israel ◽  
I. B. Obot ◽  
S. A. Umoren ◽  
V. Mkpenie ◽  
J. E. Asuquo

Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm(Elais guineensis), raffia, piassava, bamboo pulp, bamboo bark from raphia palm(Raphia hookeri), stem and cob of maize plant(Zea mays), fruit fiber from coconut fruit(Cocos nucifera), sawdusts from cotton tree(Cossypium hirsutum), pear wood(Manilkara obovata), stem of Southern gamba green (Andropogon tectorus), sugarcane baggase(Saccharium officinarum)and plantain stem (Musa paradisiaca). They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate). The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

2018 ◽  
Vol 53 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S Sutradhar ◽  
M Sarkar ◽  
J Nayeem ◽  
M Sarwar Jahan ◽  
C Tian

Four non-woods such as, dhaincha (Sesbania bispinosa), jute stick (Corchorus capsularis), wheat straw (Triticum aestivum) and corn stalks (Zea mays) were cooked by potassium hydroxide (KOH) at the optimum conditions of soda pulping. Dhaincha, wheat straw and corn stalks were delignified to kappa number 19.4, 13.6 and 19, respectively, while jute stick was not delignified sufficiently (kappa number 32.5). All these four raw materials maintained good yield in KOH process. Dhaincha produced the highest pulp yield (50.5%) and wheat straw had the lowest pulp yield (44.7). All pulps were bleached by D0EpD1 bleaching sequences in identical bleaching conditions. Final pulp brightness reached to above 80% ISO except jute stick pulp. Jute stick pulp reached to 74.9% brightness only after the consumption of 30 kg ClO2/ ton of pulp. The overall bleaching yields were 92.6%, 88.4%, 90.1 and 90.8% for dhaincha, jute stick, wheat straw and corn stalks pulps, respectively. The oSR of these four non-wood bleached pulps was above 20, consequently improved papermaking in the unrefined state. Beating rapidly increased papermaking properties, as for example, the tensile index of dhaincha pulps increased from 49 N.m/g in the unrefined pulp to 90 N.m/g in the beaten 50 oSR. It can be seen that KOH is a good substitute to soda process for non-wood.Bangladesh J. Sci. Ind. Res.53(1), 1-6, 2018


2013 ◽  
Vol 750-752 ◽  
pp. 1520-1523
Author(s):  
Hong Xia Gao ◽  
Wen Hua He ◽  
Xiu Qiong Guan ◽  
Chun Liu ◽  
Bo Yuan

The effect of chelating agents Diethylene Triamine Penta Methylene Phosphonic Acid in bamboo kraft cooking was studied. The results show that the bamboo pulp yield was 49.52% when DTPMPA dosage is 0.4%, at the same time the Kappa number was lower. With the increasing of DTPMPA dosage in bamboo kraft pulping, the bamboo pulp strength was increased.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 103-120
Author(s):  
Harjeet Kaur ◽  
Dharm Dutt ◽  
C. H. Tyagi

Sofia (Cymbopogon martini), and lemon (Cymbopogon flexuosus) grasses, are exclusively cultivated for extraction of important lemongrass and palma rosa oils. Lignocellulosic residue (LCR) of sofia and lemon grasses left after steam distillation can successfully be used for the production of chemical grade pulp. Steam distillation mitigates the problem of mass transfer, and facilitates the faster penetration of cooking liquor by leaching out a part of extraneous components. Sofia grass produces a pulp yield of 43.7% of kappa number 20 at an active alkali dose of 14% (as Na2O), maximum cooking temperature of 160 oC and cooking time 90 min. Likewise, lemon grass produces a pulp yield of 41.4% of kappa number 12.5 under the same conditions except temperature (150 oC) by a soda pulping process. Addition of 0.1% AQ at optimum cooking conditions reduces kappa number by 26 and 8% for sofia and lemon grasses with insignificant increase in pulp yield i.e. 0.2 and 0.4% for sofia and lemon grasses, respectively. The mechanical strength properties of lemon grass soda-AQ pulp are better than sofia grass. Bauer-McNett fiber classification further validates that +20 fractions are more (62.63%) in lemon grass than in sofia grass (42.72%).


2021 ◽  
Vol 12 (1) ◽  
pp. 230-242
Author(s):  
Henry Okwudili Chibudike ◽  
Nelly Acha Ndukwe ◽  
Eunice Chinedum Chibudike ◽  
Nkemdilim Ifeanyi Obi ◽  
Olubamike Adetutu Adeyoju

Pulping trials were carried out using MEA and the soda process comparing their pulping potentials. The operating conditions such as the concentration of the cooking liquor (50%, 75%, 100%) for MEA and (10%, 15%, 20%) for NaOH, the maximum cooking temperature (150oC, 160oC, 170oC) and cooking time (60, 90, 120minutes) for both processes were investigated systematically to establish optimal pulping conditions. The agro-biomass used in this investigation is Sugarcane Bagasse viewed as alternative raw material for pulp and paper production. The lignin content of Bagasse (19.5%) was low; indicating that Bagasse should be easier to pulp. The optimum cooking conditions (independent variables) for MEA pulping were 75% MEA concentration, 150oC cooking temperature and 90 minutes cooking time. Excel 2013 was used to analyze the effect of independent variables on yield of bagasse pulp and properties of furnished paper from MEA process in comparison with the Soda process which include tear index, tensile index, burst index and folding endurance with errors less than 15% in all cases. The Kappa number range (12.7-16.9), viscosity (270-870 ml/g) and brightness (62.1-93.2%) of bagasse pulp are appropriate for high-brightness printing and writing papers. The physical properties of furnished paper, tear index (13.4 mN.m2/g), tensile index (71Nm/g), Burst index (4.8 KN/g) and folding endurance (82) recommend the cellulosic pulp from Sugarcane Bagasse obtained from the MEA process for strengthening the virgin fiber in recycled papers and also for developing certain types of printing and packaging papers. Due to the awareness towards the negative impact of kraft mill’s effluent to the environment recently, soda pulping started to regain its popularity among the pulp mills especially non-wood based pulp mills. MEA process is more economically attractive given its high pulp yield, despite the significant increase in chemical demand for bleaching. MEA pulping is a good alternative to soda pulping furnishing high pulp yield with less cooking temperature, i.e. 150oC, thereby saving a considerable amount of energy with less odoriferous pollutants and pollution load associated with the soda process.


Cellulose ◽  
2005 ◽  
Vol 12 (5) ◽  
pp. 527-541 ◽  
Author(s):  
Hiroshi Kamitakahara ◽  
Yukiko Enomoto ◽  
Chinatsu Hasegawa ◽  
Fumiaki Nakatsubo

2013 ◽  
Vol 781-784 ◽  
pp. 2658-2661
Author(s):  
Hong Xia Gao ◽  
Xiu Qiong Guan ◽  
Chun Yue Ding

DTPMPA (Diethylene Triamine Penta Methylene Phosphonic Acid) was used as cooking additive in Bamboo pulping. The effect of cooking parameters such as alkali charge, maximum cooking temperature, and time at maximum temperature on bamboo kraft pulping adding additive Diethylene Triamine Penta Methylene Phosphonic Acid was studied. The results show that the optimized bamboo kraft pulping conditions are: alkali charge 17%, maximum cooking temperature 162°C, and time at maximum temperature 60min when DTPMPA dosage is 0.4%. On the optimized conditions of cooking, the highest screened bamboo pulp yield 49.52%, the kappa number of bamboo pulp is 24.68, residual alkali in kraft waste liquor 3.62g/L .


Holzforschung ◽  
2020 ◽  
Vol 74 (5) ◽  
pp. 505-512 ◽  
Author(s):  
Lucca C. Malucelli ◽  
Diego Lomonaco ◽  
Marco A.S.C. Filho ◽  
Washington L.E. Magalhães

AbstractModification techniques have been widely employed to improve cellulose properties, thus increasing the diversity of industrial applications. While wood pulp cellulose is the most common source for industrial production, little has been studied about the effects of the cellulose source and its purity on modification. Therefore, this article investigates the influence of cellulose source (e.g. wood or cotton) on its modification (acetylation), by estimating the obtained degree of substitution (DS) through Fourier-transform infrared (FT-IR), proton nuclear magnetic resonance (1H NMR) and back titration. The intense reduction in samples’ crystallinity after acetylation was a result of breakage of inter- and intra-molecular hydrogen bonds, thus confirming acetylation. Although Avicel showed the highest cellulose content and was virtually free of hemicellulose and lignin, this did not affect the acetylation degree, as all samples were successfully triacetylated. The techniques used in this study were ideal for detecting acetylation and estimating the DS, which makes them good tools for modification studies of cellulose derivatives.


Author(s):  
W. Mark Ritchie

THAT SMELL IN THE VAULTS: THE DEGRADATION OF POLYMERS IN AV MATERIALS VINEGAR Syndrome(1), Rancid Butter Syndrome(2), Rotten Fish Syndrome -- evocative but accurate descriptions of the pervasive killers of our sound and moving image heritage. Leaving aside the well-known problems of nitrate film we are faced with the stability problems of our polymer-based supports. All polymers are subject to decay; and the cellulose nitrate, cellulose diacetate, cellulose butyrate, cellulose propionate and cellulose triacetate bases are no exception. The problem is not limited to film -- audiotape, videotape, computer tape, computer disk and other formats are subject to the same inevitable decay and destruction. Over the last few years it has come to the attention of archivists around the world that the life expectancy of our audio-visual heritage is not what we once thought it should be. Storage conditions naturally have dramatic impacts on life expectancy. We...


Sign in / Sign up

Export Citation Format

Share Document