scholarly journals Simulation of Casing Treatments of a Transonic Compressor Stage

2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
M. Hembera ◽  
H.-P. Kau ◽  
E. Johann

This article presents the study of casing treatments on an axial compressor stage for improving stability and enhancing stall margin. So far, many simulations of casing treatments on single rotor or rotor-stator configurations were performed. But as the application of casing treatments in engines will be in a multistage compressor, in this study, the axial slots are applied to a typical transonic first stage of a high-pressure 4.5-stage compressor including an upstream IGV, rotor, and stator. The unsteady simulations are performed with a three-dimensional time accurate Favre-averaged Navier-stokes flow solver. In order to resolve all important flow mechanisms appearing through the use of casing treatments, a computational multiblock grid consisting of approximately 2.4 million nodes was used for the simulations. The configurations include axial slots in 4 different variations with an axial extension ranging into the blade passage of the IGV. Their shape is semicircular with no inclination in circumferential direction. The simulations proved the effectiveness of casing treatments with an upstream stator. However, the results also showed that the slots have to be carefully positioned relative to the stator location.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.



Author(s):  
D. C. Rabe ◽  
C. Hah

Experimental and numerical investigations were conducted to study the fundamental flow mechanisms of circumferential grooves in the casing of a transonic compressor and their influence on compressor stall margin. Three different groove configurations were tested in a highly loaded transonic compressor. Experimental results show that circumferential grooves increase the stall margin of the compressor at the tested operating condition. Grooves with a much smaller depth than conventional designs are shown to be similarly effective in increasing the stall margin. Steady-state Navier-Stokes analyses were performed to study flow structures associated with each casing treatment. The numerical procedure calculates the overall effects of the circumferential grooves correctly. Detailed investigation of calculated flow fields indicates that losses are generated by interaction between the main passage flow and flow exiting the grooves. The grooves increase the stall margin by reducing the flow incidence angle on the pressure side of the leading edge, despite an overall increase in the endwall boundary layer thickness. This is due to complex interaction of the main passage flow with the additional radial and tangential flows created by the grooves.



Author(s):  
Yiming Zhong ◽  
WuLi Chu ◽  
HaoGuang Zhang

Abstract Compared to the traditional casing treatment, the self-recirculating casing treatment (SCT) can improve or not decrease the compressor efficiency while achieving the stall margin improvement. For the bleed port, the main design indicator is to reduce the flow loss caused by suction, while providing sufficient jet flow and jet pressure to the injector. In order to gain a better study of the bleed port stabilization mechanisms, the bleed configuration was parameterized with the bleed port inlet width and the bleed port axial position. Five kinds of recirculating casing treatments were applied to a 1.5-stage transonic axial compressor with the method of three-dimensional unsteady numerical simulation. Fifteen identical self-recirculating devices are uniformly mounted around the annulus. The numerical results show that the SCT can improve compressor total pressure ratio and stability, shift the stall margin towards lower mass flows. Furthermore, it has no impact on compressor efficiency. The optimal case presents that stability margin is improved by 6.7% employing 3.1% of the annulus mass flow. Expanding bleed port inlet width to an intermediate level can further enhance compressor stability, but excessive bleed port inlet width will reduce the stabilization effect. The optimal bleed port position is located in the blocked area of the low energy group at the top of the rotor. In the case of solid casing, stall inception was the tip blockage, which was mainly triggered by the interaction of the tip leakage vortex and passage shock. From radial distribution, the casing treatment predominantly affects the above 70% span. The reduction of tip reflux region by suction effect is the main reason for the extension of stable operation range. The SCT also has an obvious stability improvement in tip blockage stall, while delaying the occurrence of compressor stall.



Author(s):  
Robert P. Dring ◽  
William D. Sprout ◽  
Harris D. Weingold

A three-dimensional Navier-Stokes calculation was used to analyze the impact of rotor tip clearance on the stall margin of a multi-stage axial compressor. This paper presents a summary of: (1) a study of the sensitivity of the results to grid refinement, (2) an assessment of the calculation’s ability to predict stall margin when the stalling row was the first rotor in a multi-stage rig environment, (3) an analysis of the impact of including the effects of the downstream stator through body force effects on the upstream rotor, and (4) the ability of the calculation to predict the impact of tip clearance on stall margin through a calculation of the rear seven airfoil rows of an eleven stage high pressure compressor rig. The result of these studies was that a practical tool is available which can predict stall margin, and the impact of tip clearance, with reasonable accuracy.



Author(s):  
Cristian Ferrari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina

In recent years, a constantly growing interest in CFD accuracy assessment has been noticed in the open literature. In particular, this interest has grown considerably in the field of technical and industrial applications, since CFD is nowadays routinely used by many engineers, especially in research and development. In this paper, a contribution to this topic is presented. The most common issues about CFD uncertainty are reviewed and commented. Then, some findings originating from the application of three-dimensional numerical calculations to a model of the NASA Stage 37 axial compressor are reported. Particular attention is devoted to multistage turbomachinery modelling uncertainty in terms of rotor/stator interface models and rotor and stator gridding issues.



2013 ◽  
Vol 37 (3) ◽  
pp. 283-292 ◽  
Author(s):  
Dae-Woong Kim ◽  
Jin-Hyuk Kim ◽  
Kwang-Yong Kim

Aerodynamic performance of a transonic axial compressor with a casing groove combined with injection has been investigated in this work. Three-dimensional Reynolds-averaged Navier–Stokes equations with k-ε turbulence model are discretized by finite volume approximations and solved on hexahedral grids for the flow analyses. For parametric study, the front and rear lengths and height of the casing groove are selected as the geometric parameters and are changed with constant injection to investigate their effects on the stall margin and peak adiabatic efficiency. As a result of the parametric study, the maximum stall margin and peak adiabatic efficiency are found to be obtained in the axial compressor having 70% height of the reference groove. The results show that the application of the casing groove combined with injection to an axial compressor is effective for the simultaneous improvement of both the stall margin and peak adiabatic efficiency of the compressor.



2013 ◽  
Vol 284-287 ◽  
pp. 872-877 ◽  
Author(s):  
Dae Woong Kim ◽  
Jin Hyuk Kim ◽  
Kwang Yong Kim

This paper presents a parametric study on aerodynamic performance of a transonic axial compressor combined with a casing groove and tip injection using three-dimensional Reynolds-average Navier-Stokes equations. The front and rear lengths and height of the groove are selected as the geometric parameters to investigate their effects on the stall margin and peak adiabatic efficiency. These parameters are changed with constant injection. The validation of the numerical results is performed in comparison with experimental data for the total pressure ratio and adiabatic efficiency. As the results of the parametric study, the maximum stall margin and peak adiabatic efficiency are obtained in the axial compressor having 70% groove height of the reference groove. The stall margin and peak adiabatic efficiency in other cases are also improved in comparison with the axial compressors with the smooth casing and reference groove. The results show that both the stall margin and the peak adiabatic efficiency are considerably improved by the application of the casing groove combined with tip injection in an axial compressor.



1998 ◽  
Vol 120 (2) ◽  
pp. 215-223 ◽  
Author(s):  
C. R. LeJambre ◽  
R. M. Zacharias ◽  
B. P. Biederman ◽  
A. J. Gleixner ◽  
C. J. Yetka

Two versions of a three-dimensional multistage Navier–Stokes code were used to optimize the design of an eleven-stage high-pressure compressor. The first version of the code utilized a “mixing plane” approach to compute the flow through multistage machines. The effects due to tip clearances and flowpath cavities were not modeled. This code was used to minimize the regions of separation on airfoil and endwall surfaces for the compressor. The resulting compressor contained bowed stators and rotor airfoils with contoured endwalls. Experimental data acquired for the HPC showed that it achieved 2 percent higher efficiency than a baseline machine, but it had 14 percent lower stall margin. Increased stall margin of the HPC was achieved by modifying the stator airfoils without compromising the gain in efficiency as demonstrated in subsequent rig and engine tests. The modifications to the stators were defined by using the second version of the multistage Navier–Stokes code, which models the effects of tip clearance and endwall flowpath cavities, as well as the effects of adjacent airfoil rows through the use of “bodyforces” and “deterministic stresses.” The application of the Navier–Stokes code was assessed to yield up to 50 percent reduction in the compressor development time and cost.



Author(s):  
Steffen Reising ◽  
Heinz-Peter Schiffer

Secondary flows involving cross flow and three-dimensional separation phenomena in modern axial compressors at high stage loading contribute significantly to a reduction in overall efficiency. This two-part paper presents a numerical study on the potential aerodynamic benefits of using non-axisymmetric end walls in an axial compressor, involving both the rotor and the stator row. This first paper describes the sequential profiling of stator end walls in a transonic compressor at several operating points to suppress separation. An automated multi-objective optimizer connected to a 3-D RANS flow solver was used to find the optimal end wall geometries. As a design exercise, the stator hub end wall of Configuration I of the Darmstadt Transonic Compressor was first optimized at design conditions, keeping the shroud end wall constant. This led to an increase in efficiency of 1.8% due to the suppression of the hub-corner stall. However, this was accompanied by an increased area of reverse flow at the casing, which was even more distinct at off-design conditions near stall. The numerical surge limit of the datum axisymmetric design could no longer be reached and was then determined by the new separation close to the stator casing. A subsequent optimization of the shroud end wall was carried out using the improved profiled hub as the initial design. An operating point near stall with a strongly developed separation was chosen for this purpose. The second optimization resulted in a further improvement in the characteristic speed line over the entire off-design region. Although the shroud contour was designed at off-design conditions, the optimization gained an additional 0.03% in efficiency for the design point. The lower surge limit of the datum design could also be reached again, even at higher efficiency and pressure ratios. The investigations showed that end wall profiling in high loaded compressor stators can be considered as a good supplement to 3-D blading to control separation areas and improve the entire component’s characteristics.



Author(s):  
C. R. LeJambre ◽  
R. M. Zacharias ◽  
B. P. Biederman ◽  
A. J. Gleixner ◽  
C. J. Yetka

Two versions of a three dimensional multistage Navier-Stokes code were used to optimize the design of an eleven stage high pressure compressor. The first version of the code utilized a “mixing plane” approach to compute the flow through multistage machines. The effects due to tip clearances and flowpath cavities were not modeled. This code was used to minimize the regions of separation on airfoil and endwall surfaces for the compressor. The resulting compressor contained bowed stators and rotor airfoils with contoured endwalls. Experimental data acquired for the HPC showed that it achieved 2% higher efficiency than a baseline machine, but it had 14% lower stall margin. Increased stall margin of the HPC was achieved by modifying the stator airfoils without compromising the gain in efficiency as demonstrated in subsequent rig and engine tests. The modifications to the stators were defined by using the second version of the multistage Navier-Stokes code, which models the effects of tip clearance and endwall flowpath cavities, as well as the effects of adjacent airfoil rows through the use of “bodyforces” and “deterministic stresses”. The application of the Navier-Stokes code was assessed to yield up to 50% reduction in the compressor development time and cost.



Sign in / Sign up

Export Citation Format

Share Document