Numerical Investigation on the Effect of Bleed Port With Self-Recirculating Casing Treatment on the Stability of a 1.5-Stage Transonic Compressor

Author(s):  
Yiming Zhong ◽  
WuLi Chu ◽  
HaoGuang Zhang

Abstract Compared to the traditional casing treatment, the self-recirculating casing treatment (SCT) can improve or not decrease the compressor efficiency while achieving the stall margin improvement. For the bleed port, the main design indicator is to reduce the flow loss caused by suction, while providing sufficient jet flow and jet pressure to the injector. In order to gain a better study of the bleed port stabilization mechanisms, the bleed configuration was parameterized with the bleed port inlet width and the bleed port axial position. Five kinds of recirculating casing treatments were applied to a 1.5-stage transonic axial compressor with the method of three-dimensional unsteady numerical simulation. Fifteen identical self-recirculating devices are uniformly mounted around the annulus. The numerical results show that the SCT can improve compressor total pressure ratio and stability, shift the stall margin towards lower mass flows. Furthermore, it has no impact on compressor efficiency. The optimal case presents that stability margin is improved by 6.7% employing 3.1% of the annulus mass flow. Expanding bleed port inlet width to an intermediate level can further enhance compressor stability, but excessive bleed port inlet width will reduce the stabilization effect. The optimal bleed port position is located in the blocked area of the low energy group at the top of the rotor. In the case of solid casing, stall inception was the tip blockage, which was mainly triggered by the interaction of the tip leakage vortex and passage shock. From radial distribution, the casing treatment predominantly affects the above 70% span. The reduction of tip reflux region by suction effect is the main reason for the extension of stable operation range. The SCT also has an obvious stability improvement in tip blockage stall, while delaying the occurrence of compressor stall.

Author(s):  
Ramjan R. Pathan ◽  
Quamber H. Nagpurwala ◽  
Ananthesha Bhat

Casing Treatment (CT) is one of the passive methods to increase the stability margin of the compress and hence that of the aircraft jet engines. In this paper, a novel J-shaped axial CT slot geometry is designed and numerically analysed for its effect on the performance of a single stage NACA transonic compressor. The predicted performance of the isolated rotor was validated by comparing with the published experimental results. The predicted efficiency of the baseline transonic rotor agreed well with experimental data, but the total pressure ratio was under predicted over the entire operating range. The J-shaped CT slots, with 100% axial coverage over the rotor tip chord, were able to extend the stall mass flow rate by almost 19.45% compared to the baseline rotor, accompanied with a slight reduction in rotor efficiency by 1.42%. The high pressure air entered the slots at rotor exit and flowed back through the slots and the plenum, and ejected at the rotor inlet to energise the low momentum end wall flow. The interaction of main inlet flow and the ejected flow having large tangential component of velocity, had favourable effect on the rotor incidence angle, and hence on rotor stall margin.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2346
Author(s):  
Tien-Dung Vuong ◽  
Kwang-Yong Kim

A casing treatment using inclined oblique slots (INOS) is proposed to improve the stability of the single-stage transonic axial compressor, NASA Stage 37, during operation. The slots are installed on the casing of the rotor blades. The aerodynamic performance was estimated using three-dimensional steady Reynolds-Averaged Navier-Stokes analysis. The results showed that the slots effectively increased the stall margin of the compressor with slight reductions in the pressure ratio and adiabatic efficiency. Three geometric parameters were tested in a parametric study. A single-objective optimization to maximize the stall margin was carried out using a Genetic Algorithm coupled with a surrogate model created by a radial basis neural network. The optimized design increased the stall margin by 37.1% compared to that of the smooth casing with little impacts on the efficiency and pressure ratio.


Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5 stage transonic axial compressor. The examined recirculating tip blowing casing treatment, which consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment is influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin is evaluated. The study is carried out using URANS simulations.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2401
Author(s):  
Weimin Song ◽  
Yufei Zhang ◽  
Haixin Chen

This paper focuses on the design and optimization of the axial distribution of the circumferential groove casing treatment (CGCT). Effects of the axial location of multiple casing grooves on the flow structures are numerically studied. Sweep and lean variations are then introduced to the blade tip, and their influences on the grooves are discussed. The results show that the ability of the CGCT to relieve the blockage varies with the distribution of grooves, and the three-dimensional blading affects the performance of both the blade and the CGCT. Accordingly, a multi-objective optimization combining the CGCT design with the sweep and lean design is conducted. Objectives, including the total pressure ratio and the adiabatic efficiency, are set at the design point; meanwhile, the choking mass flow and the near-stall performance are constrained. The coupling between the CGCT and the blade is improved, which contributes to an optimal design point performance and a sufficient stall margin. The sweep and lean in the tip redistribute the spanwise and chordwise loading, which enhances the ability of the CGCT to improve the blade’s performance. This work shows that the present CGCT-blade integrated optimization is a practical engineering strategy to develop the working capacity and efficiency of a compressor blade while achieving the stall margin extension.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Discrete tip injection upstream of the rotor tip is an effective technique to extend stability margin for a compressor system in an aeroengine. The current study investigates the effects of injectors’ circumferential coverage on compressor performance and stability using time-accurate three-dimensional numerical simulations for multi passages in a transonic compressor. The percentage of circumferential coverage for all the six injectors ranges from 6% to 87% for the five investigated configurations. Results indicate that circumferential coverage of tip injection can greatly affect compressor stability and total pressure ratio, but has little influence on adiabatic efficiency. The improvement of compressor total pressure ratio is linearly related with the increasing circumferential coverage. The unsteady flow fields show that there exists a non-ignorable time lag of the injection effects between the passage inlet and outlet, and blade tip loading will not decline until the injected flow reaches the passage outlet. Stability improves sharply with the increasing circumferential coverage when the coverage is less than 27%, but increases flatly for the rest. It is proven that the injection efficiency which is a measurement of averaged blockage decrement in the injected region is an effective guideline to predict the stability improvement.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
R. Schnell ◽  
M. Voges ◽  
R. Mönig ◽  
M. W. Müller ◽  
C. Zscherp

A single stage transonic axial compressor was equipped with a casing treatment consisting of 3.5 axial slots per rotor pitch in order to investigate its influence on stall margin characteristics, as well as on the rotor near tip flow field, both numerically and experimentally. Contrary to most other studies, a generic casing treatment (CT) was designed to provide optimal optical access in the immediate vicinity of the CT, rather than for maximum benefit in terms of stall margin extension. The second part of this two-part paper deals with the numerical developments and their validation, carried out in order to efficiently perform time-accurate casing treatment simulations. The numerical developments focus on the extension of an existing coupling algorithm in order to carry out unsteady calculations with any exterior geometry coupled to the main flow passage (in this case a single slot), having an arbitrary pitch. This extension is done by incorporating frequency domain, phase-lagged boundary conditions into this coupling procedure. Whereas the phase lag approach itself is well established and validated for standard rotor-stator calculations, its application to casing treatment simulations is new. Its capabilities and validation will be demonstrated on the given compressor configuration, making extensive use of the detailed particle image velocimetry flow field measurements near the rotor tip. Instantaneous data at all measurement planes will be compared for different rotor positions with respect to the stationary slots in order to evaluate the time-dependent interaction between the rotor and the casing treatment.


Author(s):  
Kwang-Jin Choi ◽  
Jin-Hyuk Kim ◽  
Kwang-Yong Kim

This paper presents a design optimization of an axial compressor with NASA Rotor 37 and five circumferential casing grooves for enhancement of stall margin. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for the flow analyses. The validation of the numerical results is performed in comparison with experimental data for pressure ratio and adiabatic efficiency. The Latin-hypercube sampling as design-of-experiments is used to generate the twelve design points within the design space. A stall margin parameter is considered as an objective function with two design variables defining the geometry of the circumferential casing grooves. The radial basis neural network method employed as a surrogate model for the design optimization of the circumferential casing grooves is trained on the numerical solutions by carrying out leave-one-out cross-validation for the data set. The results show that the stall margin of the optimum shape is enhanced considerably by the design optimization compared to the cases with smooth casing and the reference grooves.


2021 ◽  
Vol 15 (3) ◽  
pp. 8440-8449
Author(s):  
Sarallah Abbasi ◽  
Maryam Alizadeh

This study investigated a three-dimensional flow analysis on a two-stage contra-rotating axial compressor using the Navier–Stokes, continuity, and energy equations with Ansys CFX commercial software. In order to validate the obtained results, the absolute and relative flow angles curves for each rotor in radial direction were extracted and compared with the other investigation results, indicating good agreement. The compressor efficiency curve also was extracted by varying the compressor pressure ratio and compressor efficiency against mass flow rate. The flow results revealed that further distortion of the flow structure in the second rotor imposed a greater increase in the amount of entropy, especially at near-stall conditions. The increase of entropy in the second rotor is due to the interference of the tip leakage flow with the main flow which consequently caused more drops in the second rotor, suggesting that more efficacy of flow control methods occurred in the second rotor than in the first rotor.


2021 ◽  
Author(s):  
Subbaramu Shivaramaiah ◽  
Mahesh K. Varpe ◽  
Mohammed Afzal

Abstract In a transonic compressor rotor, tip leakage flow interacts with passage shock, casing boundary layer and secondary flow. This leads to increase in total pressure loss and reduction of compressor stability margin. Casing treatment is one of the passive endwall geometry modification technique to control tip leakage flow interaction. In the present investigation effect of rotor tip casing treatment is investigated on performance and stability of a NASA 37 transonic compressor stage. Existing literature reveals, that endwall casing treatment slots i.e., porous casing treatment, axial slots axially skewed slots, circumferential grooves, recirculating casing treatment etc. are able to improve compressor stability margin with penalty on stage efficiency. Turbomachinery engineers and scientists are still focusing their research work to identify an endwall casing treatment configuration with improves both compressor stall margin as well as stage efficiency. Hence in the current work, as an innovative idea, effect of casing treatment slot along rotor tip mean camber line is investigated on NASA 37 compressor stage. Casing treatment slot with rectangular cross-section was created along the rotor tip mean camber line. Four different casing treatment configurations were created by changing number of slots on rotor casing surface. In all four configurations casing treatment slot width and height remains same. Flow simulation of NASA 37 compressor stage was performed with all these four casing treatment configurations. A maximum stall margin improvement of 3% was achieved with a particular slot configuration, but without any increase in compressor stage efficiency.


Sign in / Sign up

Export Citation Format

Share Document