scholarly journals Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

2008 ◽  
Vol 16 (4) ◽  
pp. 297-313 ◽  
Author(s):  
Helgi Adalsteinsson ◽  
Bert J. Debusschere ◽  
Kevin R. Long ◽  
Habib N. Najm

Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C) multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-level dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.

2005 ◽  
Vol 33 (1) ◽  
pp. 38-62 ◽  
Author(s):  
S. Oida ◽  
E. Seta ◽  
H. Heguri ◽  
K. Kato

Abstract Vehicles, such as an agricultural tractor, construction vehicle, mobile machinery, and 4-wheel drive vehicle, are often operated on unpaved ground. In many cases, the ground is deformable; therefore, the deformation should be taken into consideration in order to assess the off-the-road performance of a tire. Recent progress in computational mechanics enabled us to simulate the large scale coupling problem, in which the deformation of tire structure and of surrounding medium can be interactively considered. Using this technology, hydroplaning phenomena and tire traction on snow have been predicted. In this paper, the simulation methodology of tire/soil coupling problems is developed for pneumatic tires of arbitrary tread patterns. The Finite Element Method (FEM) and the Finite Volume Method (FVM) are used for structural and for soil-flow analysis, respectively. The soil is modeled as an elastoplastic material with a specified yield criterion and a nonlinear elasticity. The material constants are referred to measurement data, so that the cone penetration resistance and the shear resistance are represented. Finally, the traction force of the tire in a cultivated field is predicted, and a good correlation with experiments is obtained.


2002 ◽  
Vol 2 (2) ◽  
pp. 91-98
Author(s):  
R. Winzenbacher ◽  
R. Schick ◽  
H.-H. Stabel ◽  
M. Jekel

Improved removal of particles during the treatment of natural aquatic suspensions has been achieved by pre-ozonation and the addition of small quantities of iron salts (βFe ≤ 0.1 mg.L-1; “Fe(III)-assisted filtration”) followed by rapid filtration. As shown by investigations on a large-scale installation at Lake Constance Water Supply, this procedure reliably reduces suspended solids by at least 2-3 powers of ten in long-term use. However, the high efficacy of Fe(III)-assisted filtration cannot be explained on the basis of known coagulation mechanisms (like adsorption-charge neutralization, co-precipitation). Instead, the essential step was found to be the conditioning of the filter medium by coating it with colloids containing Fe(OH)3, and this “Fe coating” process occurs only in the presence of alkaline earths (especially Ca2+). According to further experiments, the enhanced solid-liquid separation was ultimately traced to chemical interactions such as the formation of calcium-organic association structures between the iron hydroxides and other solids. For design of Fe(III)-assisted filtration steps, finally, a βCa/DOC ratio above 40 mg.mg-1 and pre-oxidation with ozone dosages not exceeding 2 mg O3/mg DOC was recommended.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 253
Author(s):  
Yosang Jeong ◽  
Hoon Ryu

The non-equilibrium Green’s function (NEGF) is being utilized in the field of nanoscience to predict transport behaviors of electronic devices. This work explores how much performance improvement can be driven for quantum transport simulations with the aid of manycore computing, where the core numerical operation involves a recursive process of matrix multiplication. Major techniques adopted for performance enhancement are data restructuring, matrix tiling, thread scheduling, and offload computing, and we present technical details on how they are applied to optimize the performance of simulations in computing hardware, including Intel Xeon Phi Knights Landing (KNL) systems and NVIDIA general purpose graphic processing unit (GPU) devices. With a target structure of a silicon nanowire that consists of 100,000 atoms and is described with an atomistic tight-binding model, the effects of optimization techniques on the performance of simulations are rigorously tested in a KNL node equipped with two Quadro GV100 GPU devices, and we observe that computation is accelerated by a factor of up to ∼20 against the unoptimized case. The feasibility of handling large-scale workloads in a huge computing environment is also examined with nanowire simulations in a wide energy range, where good scalability is procured up to 2048 KNL nodes.


Domain Walls ◽  
2020 ◽  
pp. 311-339
Author(s):  
S. Liu ◽  
I. Grinberg ◽  
A. M. Rappe

This chapter focuses on recent studies of ferroelectrics, where large-scale molecular dynamics (MD) simulations using first-principles-based force fields played a central role in revealing important physics inaccessible to direct density functional theory (DFT) calculations but critical for developing physically-based free energy functional for coarse-grained phase-field-type simulations. After reviewing typical atomistic potentials of ferroelectrics for MD simulations, the chapter describes a progressive theoretical framework that combines DFT, MD, and a mean-field theory. It then focuses on relaxor ferroelectrics. By examining the spatial and temporal polarization correlations in prototypical relaxor ferroelectrics with million-atom MD simulations and novel analysis techniques, this chapter shows that the widely accepted model of polar nanoregions embedded in a non-polar matrix is incorrect for Pb-based relaxors. Rather, the unusual properties of theses relaxor ferroelectrics stem from the presence of a multi-domain state with extremely small domain sizes (2–10 nanometers), giving rise to a greater flexibility for polarization rotations and the ultrahigh dielectric and piezoelectric responses. Finally, this chapter discusses the challenges and opportunities for multiscale simulations of ferroelectric materials.


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Danielle da Silva Francischini ◽  
Ana Paula Lopes ◽  
Mateus Lodi Segatto ◽  
Aylon Matheus Stahl ◽  
Vânia Gomes Zuin

Abstract Brazilian biodiversity and favourable environmental conditions open up possibilities not yet explored, showing potential to shift the country’s monochromatic economy into an emancipated, diversified and sustainable economic environment. This can be made possible through the integral use of its resources, exploring every functional fraction to create novel solutions to modern problems. Biorefineries present an interesting strategy to fully use the potential of agricultural feedstocks and together with green separation methods can contribute to the generation of sustainable processes and products. Passion Fruit (Passiflora edulis Sims f. flavicarpa Deg species) is produced on a large scale in Brazil and in other tropical countries, and its processing plants generate tons of residues that basically consist of peel, seeds and bagasse, which account for around 75% of its mass. These fractions of P. edulis can contain significant amounts of flavonoids, secondary metabolites that are the main compounds responsible for the fruit’s bioactivity (antioxidant, anti-inflammatory, pesticide and biocide, in general). Therefore, this work aims to develop, apply and compare the best conditions for the extraction of isoorientin, orientin and isovitexin from passion fruit applying solid–liquid methodologies, followed by analyte quantification using UHPLC-PDA. Homogenizer-assisted (HAE), ultrasound-assisted (UAE) and microwave-assisted (MAE) extraction techniques were used, as well as a full factorial design to reach optimal parameters concerning the extraction yield and energy and solvent efficiencies. According to the results, the procedure based on HAE presented the best conditions for the extraction of selected flavonoids (1.07, 0.90 and 0.33 mg g−1 of isoorientin, orientin and isovitexin, respectively) and was considered the best method according to the green and sustainable described factors.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Guodong Yu ◽  
Zewen Wu ◽  
Zhen Zhan ◽  
Mikhail I. Katsnelson ◽  
Shengjun Yuan

AbstractDodecagonal bilayer graphene quasicrystal has 12-fold rotational order but lacks translational symmetry which prevents the application of band theory. In this paper, we study the electronic and optical properties of graphene quasicrystal with large-scale tight-binding calculations involving more than ten million atoms. We propose a series of periodic approximants which reproduce accurately the properties of quasicrystal within a finite unit cell. By utilizing the band-unfolding method on the smallest approximant with only 2702 atoms, the effective band structure of graphene quasicrystal is derived. The features, such as the emergence of new Dirac points (especially the mirrored ones), the band gap at $$M$$M point and the Fermi velocity are all in agreement with recent experiments. The properties of quasicrystal states are identified in the Landau level spectrum and optical excitations. Importantly, our results show that the lattice mismatch is the dominant factor determining the accuracy of layered approximants. The proposed approximants can be used directly for other layered materials in honeycomb lattice, and the design principles can be applied for any quasi-periodic incommensurate structures.


Author(s):  
Christian Rauch ◽  
Thomas Ho¨rmann ◽  
Sebastian Jagsch ◽  
Raimund Almbauer

Much attention has been paid recently by research and development engineers on performing multi-physics calculations. One way to do this is to couple commercial tools for examining complex systems. Since the proposal of an software architecture for coupling programs as published in a previous paper significant changes have led to an improved performance for large-scale industrial applications. This architecture is being described and as a proof of concept a simulation is being conducted by coupling two commercial solvers. The speed-up of the new system is being presented. The simulation results are then compared with measurements of surface temperatures of an exhaust system of an actual sports utilities vehicle (SUV) and conclusions are being drawn. The proposed architecture is easily adaptable to various programs as it is implemented in C++ and changes for a specific code can be restricted to a view classes.


Sign in / Sign up

Export Citation Format

Share Document