scholarly journals The Applicability of Bipartite Graph Model for Thunderstorms Forecast over Kolkata

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Sutapa Chaudhuri ◽  
Anirban Middey

Single Spectrum Bipartite Graph (SSBG) model is developed to forecast thunderstorms over Kolkata(22∘32′N,88∘20′E)during the premonsoon season (April-May). The statistical distribution of normal probability is observed for temperature, relative humidity, convective available potential energy (CAPE), and convective inhibition energy (CIN) to quantify the threshold values of the parameters for the prevalence of thunderstorms. Method of conditional probability is implemented to ascertain the possibilities of the occurrence of thunderstorms within the ranges of the threshold values. The single spectrum bipartite graph connectivity model developed in this study consists of two sets of vertices; one set includes two time vertices (00UTC, 12UTC) and the other includes four meteorological parameters: temperature, relative humidity, CAPE, and CIN. Three distinct ranges of maximal eigen values are obtained for the three categories of thunderstorms. Maximal eigenvalues for severe, ordinary, and no thunderstorm events are observed to be(2.6±0.12),(1.88±0.09), and(1.26±.03), respectively. The ranges of the threshold values obtained using ten year data (1997–2006) are considered as the reference range and the result is validated with the IMD (India Meteorological Department) observation, Doppler Weather Radar (DWR) Products, and satellite images of 2007. The result reveals that the model provides 12- to 6-hour forecast (nowcasting) of thunderstorms with 96% to 98% accuracy.

2021 ◽  
pp. 100093
Author(s):  
John D. Hogan ◽  
Jiandong Wu ◽  
Joshua A. Klein ◽  
Cheng Lin ◽  
Luis Carvalho ◽  
...  
Keyword(s):  

2017 ◽  
Vol 145 (4) ◽  
pp. 1495-1509 ◽  
Author(s):  
J.-P. Duvel ◽  
S. J. Camargo ◽  
A. H. Sobel

Abstract The authors analyze how modifications of the convective scheme modify the initiation of tropical depression vortices (TDVs) and their intensification into stronger warm-cored tropical cyclone–like vortices (TCs) in global climate model (GCM) simulations. The model’s original convection scheme has entrainment and cloud-base mass flux closures based on moisture convergence. Two modifications are considered: one in which entrainment is dependent on relative humidity and another in which the closure is based on the convective available potential energy (CAPE). Compared to reanalysis, TDVs are more numerous and intense in all three simulations, probably as a result of excessive parameterized deep convection at the expense of convection detraining at midlevel. The relative humidity–dependent entrainment rate increases both TDV initiation and intensification relative to the control. This is because this entrainment rate is reduced in the moist center of the TDVs, giving more intense convective precipitation, and also because it generates a moister environment that may favor the development of early stage TDVs. The CAPE closure inhibits the parameterized convection in strong TDVs, thus limiting their development despite a slight increase in the resolved convection. However, the maximum intensity reached by TC-like TDVs is similar in the three simulations, showing the statistical character of these tendencies. The simulated TCs develop from TDVs with different dynamical origins than those observed. For instance, too many TDVs and TCs initiate near or over southern West Africa in the GCM, collocated with the maximum in easterly wave activity, whose characteristics are also dependent on the convection scheme considered.


MAUSAM ◽  
2022 ◽  
Vol 63 (3) ◽  
pp. 377-390
Author(s):  
A.K. JASWAL ◽  
S.R. BHAMBAK ◽  
M.K. GUJAR ◽  
S.H. MOHITE ◽  
S. ANANTHARAMAN ◽  
...  

Climate normals are used to describe the average climatic conditions of a particular place and are computed by National Meteorological Services of all countries. The World Meteorological Organization (WMO) recommends that all countries prepare climate normals for the 30-year periods ending in 1930, 1960, 1990 and so on, for which the WMO World Climate Normals are published. Recently, Climatological Normals for the period 1961-1990 have been prepared by India Meteorological Department (IMD) which will change the baseline of comparison from 1951-1980. In this paper, preparation of the 30-year Climatological Normals of India for the period 1961 to 1990 and spatial patterns of differences of annual means of temperatures, relative humidity, clouds, rainfall and wind speed from the previous normals (1951-1980) are documented.The changes from earlier climatological normals indicate increase in annual means of maximum temperature, relative humidity and decrease in annual means of minimum temperature, cloud amount, rainfall, rainy days and wind speed over large parts of the country during 1961-1990. The spatial patterns of changes in dry bulb temperatures and relative humidity are complementary over most parts of the country. Compared with 1951-1980 climatology, there are large scale decreases in annual mean rainfall, rainy days and wind speed over most parts of the country during 1961-1990. The decrease in wind speed may be partly due to changes in exposure conditions of observatories due to urbanization.


2009 ◽  
Vol 42 (20) ◽  
pp. 246-251 ◽  
Author(s):  
Houli DUAN ◽  
Zhiheng LI ◽  
Yi ZHANG ◽  
Zuo ZHANG ◽  
Danya YAO ◽  
...  

2007 ◽  
Vol 7 (8) ◽  
pp. 689-715
Author(s):  
K. Chen ◽  
H.-K. Lo

We propose a wide class of distillation schemes for multi-partite entangled states that are CSS-states. Our proposal provides not only superior efficiency, but also new insights on the connection between CSS-states and bipartite graph states. We then apply our distillation schemes to the tri-partite case for three cryptographic tasks---namely, (a) conference key agreement, (b) quantum sharing of classical secrets and (c) third-man cryptography. Moreover, we construct ``prepare-and-measure'' protocols for the above three cryptographic tasks which can be implemented with the generation of only a single entangled pair at a time. This gives significant simplification over previous experimental implementations which require two entangled pairs generated simultaneously. We also study the yields of those protocols and the threshold values of the fidelity above which the protocols can function securely. Rather surprisingly, our protocols will function securely even when the initial state does not violate the standard Bell-inequalities for GHZ states.


2019 ◽  
Author(s):  
Nicholas Franzese ◽  
Adam Groce ◽  
T. M. Murali ◽  
Anna Ritz

AbstractCharacterizing cellular responses to different extrinsic signals is an active area of research, and curated pathway databases describe these complex signaling reactions. Here, we revisit a fundamental question in signaling pathway analysis: are two molecules “connected” in a network? This question is the first step towards understanding the potential influence of molecules in a pathway, and the answer depends on the choice of modeling framework. We examined the connectivity of Reactome signaling pathways using four different pathway representations. We find that Reactome is very well connected as a graph, moderately well connected as a compound graph or bipartite graph, and poorly connected as a hypergraph (which captures many-to-many relationships in reaction networks). We present a novel relaxation of hypergraph connectivity that iteratively increases connectivity from a node while preserving the hypergraph topology. This measure, B-relaxation distance, provides a parameterized transition between hypergraph connectivity and graph connectivity. B-relaxation distance is sensitive to the presence of small molecules that participate in many functionally unrelated reactions in the network. We also define a score that quantifies one pathway’s downstream influence on another, which can be calculated as B-relaxation distance gradually relaxes the connectivity constraint in hypergraphs. Computing this score across all pairs of 34 Reactome pathways reveals pairs of pathways statistically significant influence. We present two such case studies, and we describe the specific reactions that contribute to the large influence score. Finally, we investigate the ability for connectivity measures to capture functional relationships among proteins, and use the evidence channels in the STRING database as a benchmark dataset. STRING interactions whose proteins are B-connected in Reactome have statistically significantly higher scores than interactions connected in the bipartite graph representation. Our method lays the groundwork for other generalizations of graph-theoretic concepts to hypergraphs in order to facilitate signaling pathway analysis.Author summarySignaling pathways describe how cells respond to external signals through molecular interactions. As we gain a deeper understanding of these signaling reactions, it is important to understand how molecules may influence downstream responses and how pathways may affect each other. As the amount of information in signaling pathway databases continues to grow, we have the opportunity to analyze properties about pathway structure. We pose an intuitive question about signaling pathways: when are two molecules “connected” in a pathway? This answer varies dramatically based on the assumptions we make about how reactions link molecules. Here, examine four approaches for modeling the structural topology of signaling pathways, and present methods to quantify whether two molecules are “connected” in a pathway database. We find that existing approaches are either too permissive (molecules are connected to many others) or restrictive (molecules are connected to a handful of others), and we present a new measure that offers a continuum between these two extremes. We then expand our question to ask when an entire signaling pathway is “downstream” of another pathway, and show two case studies from the Reactome pathway database that uncovers pathway influence. Finally, we show that the strict notion of connectivity can capture functional relationships among proteins using an independent benchmark dataset. Our approach to quantify connectivity in pathways considers a biologically-motivated definition of connectivity, laying the foundation for more sophisticated analyses that leverage the detailed information in pathway databases.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 452
Author(s):  
Yilun Shang

Social networks describe social interactions between people, which are often modeled by intersection graphs. In this paper, we propose an intersection graph model that is induced by adding a sparse random bipartite graph to a given bipartite graph. Under some mild conditions, we show that the vertex–isoperimetric number and the edge–isoperimetric number of the randomly perturbed intersection graph on n vertices are Ω ( 1 / ln n ) asymptomatically almost surely. Numerical simulations for small graphs extracted from two real-world social networks, namely, the board interlocking network and the scientific collaboration network, were performed. It was revealed that the effect of increasing isoperimetric numbers (i.e., expansion properties) on randomly perturbed intersection graphs is presumably independent of the order of the network.


Sign in / Sign up

Export Citation Format

Share Document