scholarly journals Systematic Investigation of Gettering Effects on 4th Row Element Impurities in Si by Dopant Atoms

2009 ◽  
Vol 2009 ◽  
pp. 1-3 ◽  
Author(s):  
Koji Sueoka ◽  
Ken Kamimura ◽  
Seiji Shiba

The gettering of 4th row element impurities (K, Ca, 3d transition metals, and Zn) in Si crystals by dopant atoms was systematically investigated by first-principles calculation through evaluation of the diffusion barrier and the binding energy. The dopant atoms considered include p-type dopants (B), n-type dopants (P, As, Sb), or light elements (C, O). It was found that (1) the diffusion barrier of impurity atoms decreases with an increase in their atomic number up to Ni, (2) B atom becomes an efficient gettering center for metals except for Ni, (3) most of the metals except for Fe and Co cannot be gettered by n-type dopants, and (4) C and O atoms alone do not become efficient gettering centers for the metals used in actual LSI processes. The vacancy and n-type dopant complexes (P, As, Sb) can be efficient gettering centers for Cu in n/n+ epitaxial wafers.

2021 ◽  
Vol 894 ◽  
pp. 61-66
Author(s):  
Rui Zhi Dong

Due to the development of various mobile electronic devices, such as electric vehicles, rechargeable ion batteries are becoming more and more important. However, the current commercial lithium-ion batteries have obvious defects, including poor safety from Li dendrite and flammable electrolyte, quick capacity loss and low charging and discharging rate. It is very important to find a better two-dimensional material as the anode of the battery to recover the disadvantages. In this paper, first principles calculations are used to explore the performances of VS2 bilayer and VS2 / graphene heterostructure as the anodes of Li ion batteries. Based on the calculation of the valences, binding energy, intercalation voltage, charge transfer and diffusion barrier of Li, it is found that the latter can be used as a better anode material from the perspective of insertion voltage and binding energy. At the same time, the former one is better in terms of diffusion barrier. Our study provides a comprehensive understanding on VS2 based 2D anodes.


2015 ◽  
Vol 242 ◽  
pp. 271-276
Author(s):  
Sho Shirasawa ◽  
Koji Sueoka

Fe, Ni and Cu atoms diffuse very quickly in Si and are the main targets for metal gettering. W, Hf, and Mo atoms, for example, which diffuse very slowly in Si have also recently become gettering targets in addition to these metals. Therefore, proximity gettering techniques by using ion implantation are being considered. Not only implanted elements but intrinsic point defects exist and form several complexes after the heat treatment for Si crystal recovery. This research systematically investigated the binding energy of twelve important metals (Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Hf, Ta, and W) with implanted dopants (B, C, P, and As) and their complexes with intrinsic point defects (vacancies (Vs) and self-interstitials (Is)) by using first principles calculation. These data should be useful in the design of proximity gettering in LSI manufacturing processes.


2009 ◽  
Vol 620-622 ◽  
pp. 703-706 ◽  
Author(s):  
Xiao Guang Qu ◽  
Wen Xiu Liu ◽  
Jing Ma ◽  
Dan Ni Yu ◽  
Wen Bin Cao ◽  
...  

The binding energy of anatase TiO2, in which the Ti was substituted by other transition metals in the 4th, 5th and 6th periods of the periodic system of the elements, has been calculated by using first principles method. The doping limits of V, Cr, Zr, Nb, Mo and W are 61.5%, 39.7%, 88.2%, 100.0%, 65.0%, and 63.2%, respectively predicted by the calculated binding energy, while the doping limits of other transition metals are much lower. So, these transition metals can easily be doped into the anatase structure theoretically while it is difficult for the others. And the band structure and density of states (DOS) of V, Cr, Zr, Nb, Mo and W doped anatase TiO2 have also been calculated and analyzed.


2012 ◽  
Vol 554-556 ◽  
pp. 3-12
Author(s):  
Jian Jun Cui ◽  
Fei Sun ◽  
Jian Xin Zhang

A first principles calculation method was used to investigate the site preference of Ruthenium (Ru) at the γ/γ′ interface in Ni-based single-crystal superalloys. The calculation results show that the addition of Ru can decrease the total energy and the binding energy of γ/γ′ interface, which may result in an improved microstructure stability of Ni-based single-crystal superalloys. Moreover, by calculation, it is also found that Ru can stabilize both γ and γ′ phases and have a preference for Ni site at the coherent γ/γ′ interface. When Ru substitutes the central Ni at the γ/γ′ interface, a reverse partitioning of W, Re and Cr occurs; while the partitioning behavior of Mo is not affected. The influence of Ru on the partitioning behavior of W, Re and Cr in γ′-Ni3Al was studied by Dmol3 calculation as well. The calculation results show that W, Re and Cr have a preference for Ni site in γ′- Ni3Al with Ru alloying. When Ru substitutes the central Ni atom, the site preference of W, Re and Cr varies accordingly. Furthermore, electronic structure analysis of γ/γ′ interface and γ′-Ni3Al in terms of Mulliken population and partial density of states (PDOS) was performed to understand the alloying mechanism of Ru in Ni-based single-crystal superalloys. The results show that the strengthening effect of Ru alloying is mainly due to the reduction in binding energy of Ru as well as a p-orbital hybridization between Ru and the host atoms.


2012 ◽  
Vol 602-604 ◽  
pp. 870-873 ◽  
Author(s):  
Wei Zhao ◽  
Qing Yuan Meng

The adsorption of methane (CH4) molecule on the pristine and Al-doped (4, 8) graphene was investigated via the first-principles calculations. The results demonstrated that, in comparison to the adsorption of a CH4molecule on the pristine graphene sheet, a relatively stronger adsorption was observed between the CH4molecule and Al-doped graphene with a shorter adsorption distance, larger binding energy and more charge-transfer from the graphene surface to the CH4molecule. Therefore, the Al-doped graphene can be expected to be a novel sensor for the detection of CH4molecules in future applications.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 649 ◽  
Author(s):  
Zhou Fan ◽  
Min Hu ◽  
Jianyi Liu ◽  
Xia Luo ◽  
Kun Zhang ◽  
...  

To enhance the wettability between Ag atoms and graphene of graphene-reinforced silver-based composite filler, the adsorption behavior of Ag atoms on graphene was studied by first-principles calculation. This was based on band structure analysis, both p-type doping and n-type doping form, of the vacancy-defected and Ce-doped graphene. It was verified by the subsequent investigation on the density of states. According to the charge transfer calculation, p-type doping can promote the electron transport ability between Ag atoms and graphene. The adsorption energy and population analysis show that both defect and Ce doping can improve the wettability and stability of the Ag-graphene system. Seen from these theoretical calculations, this study provides useful guidance for the preparation of Ag-graphene composite fillers.


2005 ◽  
Vol 108-109 ◽  
pp. 365-372 ◽  
Author(s):  
Koji Sueoka ◽  
S. Shiba ◽  
S. Fukutani

Theoretical consideration for technologically important phenomena in defect engineering of Czochralski silicon was performed with first principles calculation. (i) Point defect behaviour during crystal growth, (ii) enhanced oxygen precipitation in p/p+ epitaxial wafers, and (iii) Cu gettering by impurities are main topics in this work. Following results are obtained. (i) Interstitial Si I is dominant in p type Si while vacancy V is dominant in n type Si during crystal growth when dopant concentration is higher than about 1x1019atoms/cm3. (ii) In initial stage of oxygen precipitation including a few interstitial oxygen (O) atoms, BOn complex is more stable than On complex. The diffusion barrier of O atom in p+ Si is reduced to about 2.2eV compared with the barrier of about 2.5eV in intrinsic Si. (iii) In substitutional B, Sb, As, P and C atoms, only B atom can be an effective gettering center for Cu.


2018 ◽  
Vol 32 (11) ◽  
pp. 1850139 ◽  
Author(s):  
Yang Liu ◽  
Libao An ◽  
Liang Gong

To enhance the interaction between Cu and graphene in graphene reinforced Cu matrix composites, the first principles calculation was carried out to study the adsorption of Cu atoms on graphene. P-type doping and n-type doping were formed, respectively, on vacancy-defected and Au-doped graphene based on band structure analysis, and this was verified by subsequent investigation on density of states. A computation on charge transfer confirmed that p-type doping could promote the electron transport between Cu and graphene, while n-type doping would prevent it. In addition, adsorption energy and Mulliken population analysis revealed that both vacancy defects and Au doping could improve the stability of the Cu–graphene system. The research conducted in this paper provides useful guidance for the preparation of Cu/graphene composites.


2004 ◽  
Vol 137-140 ◽  
pp. 451-455 ◽  
Author(s):  
T. Ishii ◽  
L. Kövér ◽  
Z. Berényi ◽  
I. Cserny ◽  
H. Ikeno ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document