scholarly journals A Galerkin-Parameterization Method for the Optimal Control of Smart Microbeams

2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
Marwan Abukhaled ◽  
Ibrahim Sadek

A proposed computational method is applied to damp out the excess vibrations in smart microbeams, where the control action is implemented using piezoceramic actuators. From a mathematical point of view, we wish to determine the optimal boundary actuators that minimize a given energy-based performance measure. The minimization of the performance measure over the actuators is subjected to the full motion of the structural vibrations of the micro-beams. A direct state-control parametrization approach is proposed where the shifted Legendre polynomials are employed to solve the optimization problem. Legendre operational matrix and the properties of Kronecker product are utilized to find the approximated optimal trajectory and optimal control law of the lumped parameter systems with respect to the quadratic cost function by solving linear algebraic equations. Numerical examples are provided to demonstrate the applicability and efficiency of the proposed approach.

2021 ◽  
Vol 17 (1) ◽  
pp. 33
Author(s):  
Ayyubi Ahmad

A computational method based on modification of block pulse functions is proposed for solving numerically the linear Volterra-Fredholm integral equations. We obtain integration operational matrix of modification of block pulse functions on interval [0,T). A modification of block pulse functions and their integration operational matrix can be reduced to a linear upper triangular system. Then, the problem under study is transformed to a system of linear algebraic equations which can be used to obtain an approximate solution of  linear Volterra-Fredholm integral equations. Furthermore, the rate of convergence is  O(h) and error analysis of the proposed method are investigated. The results show that the approximate solutions have a good of efficiency and accuracy.


2020 ◽  
pp. 107754632094834 ◽  
Author(s):  
Sedigheh Sabermahani ◽  
Yadollah Ordokhani

This study presents a computational method for the solution of the fractional optimal control problems subject to fractional systems with equality and inequality constraints. The proposed procedure is based upon Fibonacci wavelets. The fractional derivative is described in the Caputo sense. The Riemann–Liouville operational matrix for Fibonacci wavelets is obtained. Then, we use this operational matrix and the Galerkin method to reduce the given problem into a system of algebraic equations. We discuss the convergence of the algorithm. Several numerical examples are included to observe the validity, effectiveness, and accuracy of the suggested scheme. Moreover, fractional optimal control problems are studied through a bibliometric viewpoint.


2015 ◽  
Vol 4 (3) ◽  
pp. 420 ◽  
Author(s):  
Behrooz Basirat ◽  
Mohammad Amin Shahdadi

<p>The aim of this article is to present an efficient numerical procedure for solving Lane-Emden type equations. We present two practical matrix method for solving Lane-Emden type equations with mixed conditions by Bernstein polynomials operational matrices (BPOMs) on interval [<em>a; b</em>]. This methods transforms Lane-Emden type equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equations. We also give some numerical examples to demonstrate the efficiency and validity of the operational matrices for solving Lane-Emden type equations (LEEs).</p>


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Qingxue Huang ◽  
Fuqiang Zhao ◽  
Jiaquan Xie ◽  
Lifeng Ma ◽  
Jianmei Wang ◽  
...  

In this paper, a robust, effective, and accurate numerical approach is proposed to obtain the numerical solution of fractional differential equations. The principal characteristic of the approach is the new orthogonal functions based on shifted Legendre polynomials to the fractional calculus. Also the fractional differential operational matrix is driven. Then the matrix with the Tau method is utilized to transform this problem into a system of linear algebraic equations. By solving the linear algebraic equations, the numerical solution is obtained. The approach is tested via some examples. It is shown that the FLF yields better results. Finally, error analysis shows that the algorithm is convergent.


Author(s):  
Ali Ketabdari ◽  
Mohammad Hadi Farahi ◽  
Sohrab Effati

Abstract We define a new operational matrix of fractional derivative in the Caputo type and apply a spectral method to solve a two-dimensional fractional optimal control problem (2D-FOCP). To acquire this aim, first we expand the state and control variables based on the fractional order of Bernstein functions. Then we reduce the constraints of 2D-FOCP to a system of algebraic equations through the operational matrix. Now, one can solve straightforward the problem and drive the approximate solution of state and control variables. The convergence of the method in approximating the 2D-FOCP is proved. We demonstrate the efficiency and superiority of the method by comparing the results obtained by the presented method with the results of previous methods in some examples.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Haifa Bin Jebreen ◽  
Fairouz Tchier

In this study, we apply the pseudospectral method based on Müntz–Legendre wavelets to solve the multiorder fractional differential equations with Caputo fractional derivative. Using the operational matrix for the Caputo derivative operator and applying the Chebyshev and Legendre zeros, the problem is reduced to a system of linear algebraic equations. We illustrate the reliability, efficiency, and accuracy of the method by some numerical examples. We also compare the proposed method with others and show that the proposed method gives better results.


2021 ◽  
Vol 2 (2) ◽  
pp. 68-78
Author(s):  
Anam Alwan Salih ◽  
Suha SHIHAB

The purpose of this paper is to introduce interesting modified Chebyshev orthogonal polynomial. Then, their new operational matrices of derivative and integration or modified Chebyshev polynomials of the first kind are introduced with explicit formulas. A direct computational method for solving a special class of optimal control problem, named, the quadratic optimal control problem is proposed using the obtained operational matrices. More precisely, this method is based on a state parameterization scheme, which gives an accurate approximation of the exact solution by utilizing a small number of unknown coefficients with the aid of modified Chebyshev polynomials. In addition, the constraint is reduced to some algebraic equations and the original optimal control problem reduces to optimization technique, which can be solved easily, and the approximate value of the performance index is calculated. Moreover, special attention is presented to discuss the convergence analysis and an upper bound of the error for the presented approximate solution is derived. Finally, some important illustrative examples of obtained results are shown and proved that powerful method in a simple way to get an optimal control of the considered.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 463-472 ◽  
Author(s):  
Abdulnasir Isah ◽  
Chang Phang

AbstractIn this work, we propose a new operational method based on a Genocchi wavelet-like basis to obtain the numerical solutions of non-linear fractional order differential equations (NFDEs). To the best of our knowledge this is the first time a Genocchi wavelet-like basis is presented. The Genocchi wavelet-like operational matrix of a fractional derivative is derived through waveletpolynomial transformation. These operational matrices are used together with the collocation method to turn the NFDEs into a system of non-linear algebraic equations. Error estimates are shown and some illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed technique.


2016 ◽  
Vol 57 (4) ◽  
pp. 461-481
Author(s):  
MARZIYEH MORTEZAEE ◽  
ALIREZA NAZEMI

We consider an approximation scheme using Haar wavelets for solving optimal path planning problems. The problem is first expressed as an optimal control problem. A computational method based on Haar wavelets in the time domain is then proposed for solving the obtained optimal control problem. A Haar wavelets integral operational matrix and a direct collocation method are used to find an approximate optimal trajectory of the original problem. Numerical results are also presented for several examples to demonstrate the applicability and efficiency of the proposed method.


2020 ◽  
Vol 55 (2) ◽  
Author(s):  
Eman Hassan Ouda ◽  
Suha Shihab ◽  
Mohammed Rasheed

In the present paper, the properties of Boubaker orthonormal polynomials are used to construct new Boubaker wavelet orthonormal functions which are continuous on the interval [0, 1). Then, a Boubaker wavelet orthonormal operational matrix of the derivative is obtained with the new general procedure. The matrix elements can be expressed in a simple form that reduces the computational complexity. The collocation method of the Boubaker orthonormal wavelet functions together with the application of the derived operational matrix of the derivative are then utilized to transform the higher-order integro-differential equation into a solution of linear algebraic equations. As a result, the solution of the original problem reduces to the solution of a linear system of algebraic equations and can be sufficiently solved by an approximate technique. The main advantage of the suggested method is that the orthonormality property greatly simplifies the original problem and leads to easy calculation of the coefficients of expansion. Special attention is needed to perform the convergence analysis. The error is analyzed when a sufficiently smooth function is expanded in terms of the Boubaker orthonormal wavelet functions, then an estimation of the upper bound of the error is calculated. The results obtained by the technique in the current work are reported by solving some numerical examples and the accuracy is checked by comparing the results with the exact solution.


Sign in / Sign up

Export Citation Format

Share Document