scholarly journals Comparing Multicarrier Ambiguity Resolution Methods for Geometry-Based GPS and Galileo Relative Positioning and Their Application to Low Earth Orbiting Satellite Attitude Determination

2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Kyle O'Keefe ◽  
Mark Petovello ◽  
Wei Cao ◽  
Gérard Lachapelle ◽  
Eric Guyader

This paper presents an evaluation of several GNSS multicarrier ambiguity (MCAR) resolution techniques for the purpose of attitude determination of low earth orbiting satellites (LEOs). It is based on the outcomes of the study performed by the University of Calgary and financed by the European 6th Framework Programme for Research and Development as part of the research project PROGENY. The existing MCAR literature is reviewed and eight possible variations of the general MCAR processing scheme are identified based on two possible options for the mathematical model of the float solution, two options for the estimation technique used for the float solution, and finally two possible options for the ambiguity resolution process. The two most promising methods, geometry-based filtered cascading and geometry-based filtered LAMBDA, are analysed in detail for two simulated users modelled after polar orbiting LEOs through an extensive covariance simulation. Both the proposed Galileo constellation and Galileo used in conjunction with the GPS constellation are tested and results are presented in terms of probabilities of correct ambiguity resolution and float and fixed solution baseline accuracies. The LAMBDA algorithm is shown to outperform the cascading method, particularly in the single-frequency dual-GNSS system case. Secondly, more frequencies and multiple GNSS always offer improvement, but the single-frequency dual-system case is found to have similar performance to the dual-frequency single-system case.

2021 ◽  
Vol 13 (14) ◽  
pp. 2710
Author(s):  
Ming Gao ◽  
Genyou Liu ◽  
Shengliang Wang ◽  
Gongwei Xiao ◽  
Wenhao Zhao ◽  
...  

GNSS-only attitude determination is difficult to perform well in poor-satellite-tracking environments such as urban areas with high and dense buildings or trees. In addition, it is harder to resolve integer ambiguity in the case of single-frequency single-epoch process mode. In this contribution, a low-cost MEMS gyroscope is integrated with multi-antenna GNSS to improve the performance of the attitude determination. A new tightly coupled (TC) model is proposed, which uses a single filter to achieve the optimal estimation of attitude drift, gyro biases and ambiguities. In addition, a MEMS-Attitude-aided Quality-Control method (MAQC) for GNSS observations is designed to eliminate both the carrier multipath errors and half-cycle slips disturbing ambiguity resolution. Vehicle experiments show that in GNSS-friendly scenarios, the Ambiguity Resolution (AR) success rate of the proposed model with MAQC can reach 100%, and the accuracy of attitudes are (0.12, 0.2, 0.2) degrees for heading, pitch and roll angles, respectively. Even in harsh scenarios, the AR success rate increases from about 67% for the GNSS only case to above 90% after coupling GNSS tightly with MEMS, and it is further improved to about 98% with MAQC. Meanwhile, the accuracy and continuity of attitude determination are effectively guaranteed.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3500 ◽  
Author(s):  
Fu Zheng ◽  
Xiaopeng Gong ◽  
Yidong Lou ◽  
Shengfeng Gu ◽  
Guifei Jing ◽  
...  

Global Navigation Satellite System pseudorange biases are of great importance for precise positioning, timing and ionospheric modeling. The existence of BeiDou Navigation Satellite System (BDS) receiver-related pseudorange biases will lead to the loss of precision in the BDS satellite clock, differential code bias estimation, and other precise applications, especially when inhomogeneous receivers are used. In order to improve the performance of BDS precise applications, two ionosphere-free and geometry-free combinations and ionosphere-free pseudorange residuals are proposed to calibrate the raw receiver-related pseudorange biases of BDS on each frequency. Then, the BDS triple-frequency receiver-related pseudorange biases of seven different manufacturers and twelve receiver models are calibrated. Finally, the effects of receiver-related pseudorange bias are analyzed by BDS single-frequency single point positioning (SPP), single- and dual-frequency precise point positioning (PPP), wide-lane uncalibrated phase delay (UPD) estimation, and ambiguity resolution, respectively. The results show that the BDS SPP performance can be significantly improved by correcting the receiver-related pseudorange biases and the accuracy improvement is about 20% on average. Moreover, the accuracy of single- and dual-frequency PPP is improved mainly due to a faster convergence when the receiver-related pseudorange biases are corrected. On the other hand, the consistency of wide-lane UPD among different stations is improved significantly and the standard deviation of wide-lane UPD residuals is decreased from 0.195 to 0.061 cycles. The average success rate of wide-lane ambiguity resolution is improved about 42.10%.


2019 ◽  
Vol 11 (12) ◽  
pp. 1430 ◽  
Author(s):  
Wu ◽  
Liu ◽  
Wang ◽  
Zhang

In this contribution, we assess, for the first time, the tightly combined real-time kinematic (RTK) with GPS, Galileo, and BDS-3 operational satellites using observations from their overlapping L1-E1-B1C/L5-E5a-B2a frequencies. First, the characteristics of B1C/B2a signals from BDS-3 operational satellites is evaluated compared to GPS/Galileo L1-E1/L5-E5a signals in terms of observed carrier-to-noise density ratio, pseudorange multipath and noise, as well as double-differenced carrier phase and code residuals using data collected with scientific geodetic iGMAS and commercial M300Pro receivers. It’s demonstrated that the observational quality of B1C/B2a signals from BDS-3 operational satellites is comparable to that of GPS/Galileo L1-E1/L5-E5a signals. Then, we investigate the size and stability of phase and code differential inter-system bias (ISB) between BDS-3/GPS/Galileo B1C-L1-E1/B2a-L5-E5a signals using short baseline data collected with both identical and different receiver types. It is verified that the BDS-3/GPS/Galileo ISBs are indeed close to zero when identical type of receivers are used at both ends of a baseline. Moreover, they are generally present and stable in the time domain for baselines with different receiver types, which can be easily calibrated and corrected in advance. Finally, we present initial assessment of single-epoch tightly combined BDS-3/GPS/Galileo RTK with single-frequency and dual-frequency observations using a formal and empirical analysis, consisting of ambiguity dilution of precision (ADOP), ratio values, the empirical ambiguity resolution success rate, and the positioning accuracy. Experimental results demonstrate that the tightly combined model can deliver much lower ADOP and higher ratio values with respect to the classical loosely combined model whether for GPS/BDS-3 or GPS/Galileo/BDS-3 solutions. The positioning accuracy and the empirical ambiguity resolution success rate are remarkably improved as well, which could reach up to approximately 10%∼60% under poor observational conditions.


2019 ◽  
Vol 11 (4) ◽  
pp. 408 ◽  
Author(s):  
Xin Li ◽  
Xingxing Li ◽  
Fujian Ma ◽  
Yongqiang Yuan ◽  
Keke Zhang ◽  
...  

The fusion of low earth orbit (LEO) constellation and Global Navigation Satellite Systems (GNSS) can increase the number of visible satellites and optimize spatial geometry, which is expected to improve the performance of precise point positioning (PPP) ambiguity resolution (AR). In addition, the multi-frequency signals of LEO satellites can bring a variety of observation combinations, which is potential to further improve the efficiency of PPP AR. In this contribution, multi-frequency PPP AR was achieved with the augmentation of different LEO constellations. Three types of LEO constellations were designed with 60, 192, and 288 satellites. Moreover, the corresponding observation data were simulated with the GNSS observations over the ground stations. The LEO constellations were designed to transmit navigation signals on three frequencies: L1, L2, and L5 at 1575.42, 1227.6, and 1176.45 MHz, respectively, which are consistent with the GPS signals. For PPP AR, the uncalibrated phase delay (UPD) products of GNSS and LEO were estimated first. Furthermore, the quality of UPD products was also analyzed. The research findings show that the performance of estimated LEO UPD is comparable to that of GNSS UPD. Based on the UPD products, LEO-augmented multi-GNSS PPP AR can be achieved. Numerous results show that the performance of single-system and multi-GNSS PPP AR can be significantly improved by introducing the LEO constellations. The augmentation performance is more remarkable in the case of increasing LEO satellites. The time to first fix (TTFF) of the GREC fixed solution can be shortened from 7.1 to 4.8, 1.1, and 0.7 min, by introducing observations of 60-, 192-, and 288-LEO constellations, respectively. The positioning accuracy of multi-GNSS fixed solutions is also improved by about 60%, 80%, and 90% with the augmentation of 60-, 192-, and 288-LEO constellations, respectively. Compared to the dual-frequency solutions, the triple-frequency LEO-augmented PPP fixed solution presents a better performance. The TTFF of GREC fixed solutions is shortened to 33 s with the augmentation of 288-LEO constellation under the triple-frequency environment. It is worth indicating that the 288-satellite LEO-only PPP AR was conducted in dual-frequency and triple-frequency modes, respectively. The averaged TTFFs of both modes are 71.8 s and 55.2 s, respectively. It indicates that LEO constellation with 288 satellites is capable of achieving high-precision positioning independently and shows an even better performance than GNSS-only solutions.


Author(s):  
Olga Mikhaylovna Tikhonova ◽  
Alexander Fedorovich Rezchikov ◽  
Vladimir Andreevich Ivashchenko ◽  
Vadim Alekseevich Kushnikov

The paper presents the system of predicting the indicators of accreditation of technical universities based on J. Forrester mechanism of system dynamics. According to analysis of cause-and-effect relationships between selected variables of the system (indicators of accreditation of the university) there was built the oriented graph. The complex of mathematical models developed to control the quality of training engineers in Russian higher educational institutions is based on this graph. The article presents an algorithm for constructing a model using one of the simulated variables as an example. The model is a system of non-linear differential equations, the modelling characteristics of the educational process being determined according to the solution of this system. The proposed algorithm for calculating these indicators is based on the system dynamics model and the regression model. The mathematical model is constructed on the basis of the model of system dynamics, which is further tested for compliance with real data using the regression model. The regression model is built on the available statistical data accumulated during the period of the university's work. The proposed approach is aimed at solving complex problems of managing the educational process in universities. The structure of the proposed model repeats the structure of cause-effect relationships in the system, and also provides the person responsible for managing quality control with the ability to quickly and adequately assess the performance of the system.


Sign in / Sign up

Export Citation Format

Share Document