scholarly journals Different Subcellular Localization of ALCAM Molecules in Neuroblastoma: Association with Relapse

2010 ◽  
Vol 32 (1-2) ◽  
pp. 77-86
Author(s):  
Maria Valeria Corrias ◽  
Claudio Gambini ◽  
Andrea Gregorio ◽  
Michela Croce ◽  
Gaia Barisione ◽  
...  

Background: The Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD), involved in nervous system development, has been linked to tumor progression and metastasis in several tumors. No information is available on ALCAM expression in neuroblastoma, a childhood neoplasia originating from the sympathetic nervous system.Methods: ALCAM expression was analysed by immunofluorescence and immunohistochemistry on differentiated neuroblastoma cell lines and on archival specimens of stroma-poor, not MYCN amplified, resectable neuroblastoma tumors, respectively.Results: ALCAM is variously expressed in neuroblastoma cell lines, is shed by metalloproteases and is cleaved by ADAM17/TACE in vitro. ALCAM is expressed in neuroblastoma primary tumors with diverse patterns of subcellular localization and is highly expressed in the neuropil area in a subgroup of cases. Tumor specimens showing high expression of ALCAM at the membrane of the neuroblast body or low levels in the neuropil area are associated with relapse (P = 0.044 and P < 0.0001, respectively). In vitro differentiated neuroblastoma cells show strong ALCAM expression on neurites, suggesting that ALCAM expression in the neuropil is related to a differentiated phenotype.Conclusions: Assessment of ALCAM localization by immunohistochemistry may help to identify patients who, in the absence of negative prognostic factors, are at risk of relapse and require a more careful follow-up.

2021 ◽  
Vol 3 (4) ◽  
pp. 12-24
Author(s):  
Mabao YUAN ◽  
Hanjiao HANG ◽  
Lubin YAN ◽  
Xuanjie HUANG ◽  
Ziyang SANG ◽  
...  

[Objective] Neuroblastoma is the most common pediatric neuroendocrine tumor. Patients with high-risk neuroblastoma have poor clinical outcomes. Understanding the mechanisms underlying neuroblastoma progression could help identify potential therapeutic targets. This study aimed to explore the roles of itchy E3 ubiquitin-protein ligase (ITCH) in neuroblastoma progression using neuroblastoma cell lines and xenograft models of neuroblastoma. [Methods] ITCH-silencing or overexpressing neuroblastoma cells were established using two different human neuroblastoma cell lines, SK-N-AS and SH-SY5Y. In vitro and in vivo experiments were carried out to determine the effects of ITCH on neuroblastoma cell behaviors. The dual-luciferase reporter assay and co-transfection experiments were applied to determine the interaction of ITCH and miR-145-5p during neuroblastoma progression. [Results] In both cell lines, ITCH overexpression significantly promotes the proliferation, migration, and invasion capacities of neuroblastoma cells, while ITCH silencing with ShITCH suppressed neuroblastoma cell proliferation and induced apoptosis. Moreover, overexpression of ITCH decreased 51% and 54% the protein expressions of large tumor suppressor kinase 1 (LATS1), and inhibited 59% and 66% the phosphorylation of Yes-associated protein (YAP), concomitant with 2.02-fold and 2.56-fold increased expressions of cell proliferation marker Ki67 and 2.51-fold and 2.26-fold elevated levels of anti-apoptosis marker Bcl2 in SK-N-AS and SH-SY5Y cells, respectively. The dual-luciferase reporter assay demonstrated that ITCH interacted with miR-145-5p. Further in vitro and xenograft experiments showed that ITCH negatively affected the tumor-suppressive effect of miR-145-5p. [Conclusion] ITCH promotes neuroblastoma cell proliferation and metastasis by inhibiting LATS1 and promoting YAP nuclear translocation.


2021 ◽  
Vol 13 (607) ◽  
pp. eabd5750
Author(s):  
Balakrishna Koneru ◽  
Ahsan Farooqi ◽  
Thinh H. Nguyen ◽  
Wan Hsi Chen ◽  
Ashly Hindle ◽  
...  

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4459-4459
Author(s):  
Morris Kletzel ◽  
Sarah C. Tallman ◽  
Marie Olszewski ◽  
Wei Huang

Abstract Objective: While busulfan is a commonly used chemotherapeutic agent in the treatment of many hematological diseases, its effectiveness against neuroblastoma is still in question. This study aims to assess the degree of apoptosis and cell death in neuroblastoma cell lines and primary neuroblastoma tumors when exposed to varying doses of busulfan. Materials and Methods: Cultures from established cell lines SKN-SH, SKN-DOX-R, IMR-5, and NGP (n=4), as well as cultures from primary tumors (n=2) were seeded at 106 cells/ml in RPMI640 supplemented with 10% fetal bovine serum (FBS) and transferred to 24-well plates, where cells were exposed to 1ml of busulfan at 0, 0.001, 0.005, 0.01, 0.05, and 0.1mg/ml per well. Cells were incubated at 37°C in a humidified atmosphere of 5% CO2 for 72 hours. Wells were sacrificed after 0, 6, 24, 48 and 72 hours and tested with Annexin V and PI; 10,000 events were measured by flow cytometry. The percentage of apoptotic and dead cells was plotted in a graph and a t-test was performed against the untreated control. Results: After 24 hours, there was a significant decrease in cell viability of each dose when compared to the control untreated cells (p<0.005). 24 Hour % Cell Viability for Varying Doses of Busulfan (mg/ml) Dose 0 Dose 0.001 Dose 0.005 Dose 0.01 Dose 0.05 Dose 0.1 Mean 66.1 44.4 40.3 40.7 37.7 39 SEM 5.56 5.17 5.96 6.17 6.03 5.60 Median 65 33.5 38 39 37 31 Range 39 to 97 14 to 87 4 to 89 6 to 93 4 to 77 5 to 88 The overall mean decrease in cell viability when compared to the control was 25.7%. However, there were only modest differences in effectiveness when comparing the doses, with an average of only 5–7% difference between doses. Further, there was much variability between the different cell lines, some with changes in apoptosis and cell death of over 50%, while other lines showed no changes at all. Limited differences were seen after 6 hours, and after 72 hours any effect of busulfan was masked by cell death due to other factors, as seen through increased cell death in untreated cells. Conclusion: Busulfan induced apoptosis and cell death in vitro in neuroblastoma cell lines at a mean of 76.43% for non-resistant lines, 59.33% for primary tumors and 35% for resistant cell lines (at middle dose 0.01mg/ml). The resistance of certain cell lines confirms the difficulties of treating multi-drug resistant cells in often heterogeneous neuroblastoma tumors. That some cell lines were responsive shows the potential of using busulfan to treat neuroblastoma in the future.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 202 ◽  
Author(s):  
Conny Tümmler ◽  
Gianina Dumitriu ◽  
Malin Wickström ◽  
Peter Coopman ◽  
Andrey Valkov ◽  
...  

Neuroblastoma is a malignancy arising from the developing sympathetic nervous system and the most common and deadly cancer of infancy. New therapies are needed to improve the prognosis for high-risk patients and to reduce toxicity and late effects. Spleen tyrosine kinase (SYK) has previously been identified as a promising drug target in various inflammatory diseases and cancers but has so far not been extensively studied as a potential therapeutic target in neuroblastoma. In this study, we observed elevated SYK gene expression in neuroblastoma compared to neural crest and benign neurofibroma. While SYK protein was detected in the majority of examined neuroblastoma tissues it was less frequently observed in neuroblastoma cell lines. Depletion of SYK by siRNA and the use of small molecule SYK inhibitors significantly reduced the cell viability of neuroblastoma cell lines expressing SYK protein. Moreover, SYK inhibition decreased ERK1/2 and Akt phosphorylation. The SYK inhibitor BAY 613606 enhanced the effect of different chemotherapeutic drugs. Transient expression of a constitutive active SYK variant increased the viability of neuroblastoma cells independent of endogenous SYK levels. Collectively, our findings suggest that targeting SYK in combination with conventional chemotherapy should be further evaluated as a treatment option in neuroblastoma.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Yaoli Pu Yang ◽  
Simeng Wang ◽  
Xingguo Li ◽  
Nina F. Schor

Neuroblastoma is a childhood neural crest tumor. Fenretinide, a retinoic acid analogue, induces accumulation of mitochondrial reactive oxygen species and consequent apoptosis in neuroblastoma cells. The p75 neurotrophin receptor (p75NTR) enhances the antineuroblastoma cell efficacy of fenretinidein vitro. We examined the role of the retinoid binding protein, CRABP1, in p75NTR-mediated potentiation of the efficacy of fenretinide. Knockdown and overexpression, respectively, of either p75NTR or CRABP1 were effected in neuroblastoma cell lines using standard techniques. Expression was determined by qRT-PCR and confirmed at the protein level by Western blot. Metabolic viability was determined by Alamar blue assay. While protein content of CRABP1 correlated roughly with that of p75NTR in the three neuroblastoid or epithelioid human neuroblastoma cell lines studied, manipulation of p75NTR expression resulted in cell line-dependent, variable change in CRABP1 expression. Furthermore, in some cell lines, induced expression of CRABP1 in the absence of p75NTR did not alter cell sensitivity to fenretinide treatment. The effects of manipulation of p75NTR expression on CRABP1 expression and the effects of CRABP1 expression on fenretinide efficacy are therefore neuroblastoma cell line-dependent. Potentiation of the antineuroblastoma cell effects of fenretinide by p75NTR is not mediated solely through CRABP1.


Gene ◽  
2004 ◽  
Vol 337 ◽  
pp. 91-103 ◽  
Author(s):  
Hidehiko Sugino ◽  
Tomoko Toyama ◽  
Yusuke Taguchi ◽  
Shigeyuki Esumi ◽  
Mitsuhiro Miyazaki ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2904
Author(s):  
Margot Gautier ◽  
Cécile Thirant ◽  
Olivier Delattre ◽  
Isabelle Janoueix-Lerosey

Neuroblastoma, a pediatric cancer of the peripheral sympathetic nervous system, is characterized by an important clinical heterogeneity, and high-risk tumors are associated with a poor overall survival. Neuroblastoma cells may present with diverse morphological and biochemical properties in vitro, and seminal observations suggested that interconversion between two phenotypes called N-type and S-type may occur. In 2017, two main studies provided novel insights into these subtypes through the characterization of the transcriptomic and epigenetic landscapes of a panel of neuroblastoma cell lines. In this review, we focus on the available data that define neuroblastoma cell identity and propose to use the term noradrenergic (NOR) and mesenchymal (MES) to refer to these identities. We also address the question of transdifferentiation between both states and suggest that the plasticity between the NOR identity and the MES identity defines a noradrenergic-to-mesenchymal transition, reminiscent of but different from the well-established epithelial-to-mesenchymal transition.


2002 ◽  
Vol 13 (2) ◽  
pp. 698-710 ◽  
Author(s):  
Sylvie Ozon ◽  
Antoine Guichet ◽  
Olivier Gavet ◽  
Siegfried Roth ◽  
André Sobel

Stathmin is a ubiquitous regulatory phosphoprotein, the generic element of a family of neural phosphoproteins in vertebrates that possess the capacity to bind tubulin and interfere with microtubule dynamics. Although stathmin and the other proteins of the family have been associated with numerous cell regulations, their biological roles remain elusive, as in particular inactivation of the stathmin gene in the mouse resulted in no clear deleterious phenotype. We identified stathmin phosphoproteins inDrosophila, encoded by a unique gene sharing the intron/exon structure of the vertebrate stathmin andstathmin family genes. They interfere with microtubule assembly in vitro, and in vivo when expressed in HeLa cells. Drosophila stathmin expression is regulated during embryogenesis: it is high in the migrating germ cells and in the central and peripheral nervous systems, a pattern resembling that of mammalian stathmin. Furthermore, RNA interference inactivation ofDrosophila stathmin expression resulted in germ cell migration arrest at stage 14. It also induced important anomalies in nervous system development, such as loss of commissures and longitudinal connectives in the ventral cord, or abnormal chordotonal neuron organization. In conclusion, a single Drosophilagene encodes phosphoproteins homologous to the entire vertebrate stathmin family. We demonstrate for the first time their direct involvement in major biological processes such as development of the reproductive and nervous systems.


2006 ◽  
Vol 921 (1) ◽  
pp. 129-136 ◽  
Author(s):  
JAMES A. WASCHEK ◽  
EMANUEL M. DICICCO-BLOOM ◽  
VINCENT LELIEVRE ◽  
XINRONG ZHOU ◽  
ZHONGTING HU

Sign in / Sign up

Export Citation Format

Share Document