scholarly journals Ground-Penetrating Radar Evaluation of Moisture and Frost across Typical Saskatchewan Road Soils

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Curtis Berthelot ◽  
Diana Podborochynski ◽  
Timo Saarenketo ◽  
Brent Marjerison ◽  
Colin Prang

This study was undertaken to evaluate the effect of soil type, moisture content, and the presence of frost on road substructure permittivity. Permittivity sensitivity of typical road soils was characterized in the laboratory to provide baseline dielectric constant values which were compared to field ground penetrating radar (GPR) survey results. Both laboratory devices, the complex dielectric network analyzer and the Adek Percometer, as well as the field GPR system were used in this study to measure the dielectric constant of soils. All three systems differentiated between coarse-grained and fine grained soils. In addition, at temperatures below freezing, all three systems identified an increase in water content in soils; however, when frozen, the sensitivity of dielectric constant across soil type and moisture content was significantly reduced. Based on the findings of this study, GPR technology has the ability to characterize in situ substructure soil type and moisture content of typical Saskatchewan road substructure soils. Given the influence of road soil type and moisture content on in-service road performance, this ability could provide road engineers with accurate estimates of in situ structural condition of road structures for preservation and rehabilitation planning and optimization purposes.

2018 ◽  
Vol 10 (10) ◽  
pp. 1667 ◽  
Author(s):  
Omer Shamir ◽  
Naftaly Goldshleger ◽  
Uri Basson ◽  
Moshe Reshef

Soil moisture content (SMC) down to the root zone is a major factor for the efficient cultivation of agricultural crops, especially in arid and semi-arid regions. Precise SMC can maximize crop yields (both quality and quantity), prevent crop damage, and decrease irrigation expenses and water waste, among other benefits. This study focuses on the subsurface spatial electromagnetic mapping of physical properties, mainly moisture content, using a ground-penetrating radar (GPR). In the laboratory, GPR measurements were carried out using an 800 MHz central-frequency antenna and conducted in soil boxes with loess soil type (calcic haploxeralf) from the northern Negev, hamra soil type (typic rhodoxeralf) from the Sharon coastal plain, and grumusol soil type (typic chromoxerets) from the Jezreel valley, Israel. These measurements enabled highly accurate, close-to-real-time evaluations of physical soil qualities (i.e., wave velocity and dielectric constant) connected to SMC. A mixture model based mainly on soil texture, porosity, and effective dielectric constant (permittivity) was developed to measure the subsurface spatial volumetric soil moisture content (VSMC) for a wide range of moisture contents. The analysis of the travel times for GPR reflection and diffraction waves enabled calculating electromagnetic velocities, effective dielectric constants, and spatial SMC under laboratory conditions, where the required penetration depth is low (root zone). The average VSMC was determined with an average accuracy of ±1.5% and was correlated to a standard oven-drying method, making this spatial method useful for agricultural practice and for the design of irrigation plans for different interfaces.


Author(s):  
O. Shamir ◽  
N. Goldshleger ◽  
U. Basson ◽  
M. Reshef

Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR) reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf), common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf), common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.


Author(s):  
O. Shamir ◽  
N. Goldshleger ◽  
U. Basson ◽  
M. Reshef

Soil subsurface moisture content, especially in the root zone, is important for evaluation the influence of soil moisture to agricultural crops. Conservative monitoring by point-measurement methods is time-consuming and expensive. In this paper we represent an active remote-sensing tool for subsurface spatial imaging and analysis of electromagnetic physical properties, mostly water content, by ground-penetrating radar (GPR) reflection. Combined with laboratory methods, this technique enables real-time and highly accurate evaluations of soils' physical qualities in the field. To calculate subsurface moisture content, a model based on the soil texture, porosity, saturation, organic matter and effective electrical conductivity is required. We developed an innovative method that make it possible measures spatial subsurface moisture content up to a depth of 1.5 m in agricultural soils and applied it to two different unsaturated soil types from agricultural fields in Israel: loess soil type (Calcic haploxeralf), common in rural areas of southern Israel with about 30% clay, 30% silt and 40% sand, and hamra soil type (Typic rhodoxeralf), common in rural areas of central Israel with about 10% clay, 5% silt and 85% sand. Combined field and laboratory measurements and model development gave efficient determinations of spatial moisture content in these fields. The environmentally friendly GPR system enabled non-destructive testing. The developed method for measuring moisture content in the laboratory enabled highly accurate interpretation and physical computing. Spatial soil moisture content to 1.5 m depth was determined with 1–5% accuracy, making our method useful for the design of irrigation plans for different interfaces.


2021 ◽  
Vol 13 (9) ◽  
pp. 1846
Author(s):  
Vivek Kumar ◽  
Isabel M. Morris ◽  
Santiago A. Lopez ◽  
Branko Glisic

Estimating variations in material properties over space and time is essential for the purposes of structural health monitoring (SHM), mandated inspection, and insurance of civil infrastructure. Properties such as compressive strength evolve over time and are reflective of the overall condition of the aging infrastructure. Concrete structures pose an additional challenge due to the inherent spatial variability of material properties over large length scales. In recent years, nondestructive approaches such as rebound hammer and ultrasonic velocity have been used to determine the in situ material properties of concrete with a focus on the compressive strength. However, these methods require personnel expertise, careful data collection, and high investment. This paper presents a novel approach using ground penetrating radar (GPR) to estimate the variability of in situ material properties over time and space for assessment of concrete bridges. The results show that attributes (or features) of the GPR data such as raw average amplitudes can be used to identify differences in compressive strength across the deck of a concrete bridge. Attributes such as instantaneous amplitudes and intensity of reflected waves are useful in predicting the material properties such as compressive strength, porosity, and density. For compressive strength, one alternative approach of the Maturity Index (MI) was used to estimate the present values and compare with GPR estimated values. The results show that GPR attributes could be successfully used for identifying spatial and temporal variation of concrete properties. Finally, discussions are presented regarding their suitability and limitations for field applications.


2021 ◽  
pp. 1-53
Author(s):  
Lei Fu ◽  
Lanbo Liu

Ground-penetrating radar (GPR) is a geophysical technique widely used in near-surface non-invasive detecting. It has the ability to obtaining a high-resolution internal structure of living trunks. Full wave inversion (FWI) has been widely used to reconstruct the dielectric constant and conductivity distribution for cross-well application. However, in some cases, the amplitude information is not reliable due to the antenna coupling, radiation pattern and other effects. We present a multiscale phase inversion (MPI) method, which largely matches the phase information by normalizing the magnitude spectrum; in addition, a natural multiscale approach by integrating the input data with different times is implemented to partly mitigate the local minimal problem. Two synthetic GPR datasets generated from a healthy oak tree trunk and from a decayed trunk are tested by MPI and FWI. Field GPR dataset consisting of 30 common shot GPR data are acquired on a standing white oak tree (Quercus alba); the MPI and FWI methods are used to reconstruct the dielectric constant distribution of the tree cross-section. Results indicate that MPI has more tolerance to the starting model, noise level and source wavelet. It can provide a more accurate image of the dielectric constant distribution compared to the conventional FWI.


2013 ◽  
Vol 539 ◽  
pp. 25-29
Author(s):  
Wei Chen ◽  
Pei Liang Shen ◽  
Jian Xin Lu ◽  
Wan Ru Zhang

The variations of dielectric constant and the amplitude of reflected EM wave of concrete during the first 3 days are measured with Ground Penetrating Radar (GPR) at 20 oC. The amplitude decreases sharply after mixing with water, and then increases till a stabilized stage, followed by a gradual decline. The relative dielectric constant decreases with increasing hydrating time. The results show that the dielectric properties of concrete can be used as an effective way of studying the kinetics of concrete setting and hardening process at early ages.


2018 ◽  
Vol 23 (4) ◽  
pp. 489-496
Author(s):  
J. David Redman ◽  
A. Peter Annan ◽  
Nectaria Diamanti

Bulk electrical properties of media are important inherently for ground penetrating radar (GPR) applications and for providing a means to determine indirectly other physical properties such as moisture content. We have developed a reflector whose reflectivity can be controlled electronically. This variable reflector controlled by a GPR provides an effective method to measure bulk electrical properties of media. For sample measurements, the GPR is placed on one side of a sample and the variable reflector on the opposite side. GPR trace data are then acquired with the reflector in an on-state and in the off-state. By differencing these measurements, we improve the ability to detect the specific reflection event from the variable reflector. This process removes both the direct wave and clutter from the trace data, improving the quality of the refection event and our ability to accurately pick its arrival time and amplitude. We describe the variable reflector, a prototype instrument based on the reflector and numerical modeling performed to understand its response. We also show the results of testing applications to the measurement of wood chip moisture content and monitoring of the electrical properties of concrete during the curing process.


Sign in / Sign up

Export Citation Format

Share Document