scholarly journals Synthesis of One Dimensional Gold Nanostructures

2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Hongchen Li ◽  
Caixia Kan ◽  
Zhaoguang Yi ◽  
Xiaolong Ding ◽  
Yanli Cao ◽  
...  

Gold nanostructures with shapes of rod, dumbbells, and dog bone have been fabricated by an improved seed-mediated method. It is found that the pH change (the addition of HNO3or HCl) and the presence of Ag+ions have a great influence on the growth process and aspect ratios of these Au nanocrystals. UV-Vis-NIR absorption spectra for the Au colloidal show that the transverse plasmon absorption band locates at ~520 nm, while the longitudinal plasmon absorption band shifts in a wide spectra region of 750–1100 nm. The obtained Au nanostructures have been investigated by transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray diffractometer. Based on the characterizations and FDTD simulations, most of the obtained Au nanorods are single crystals, possessing an octagonal cross-section bounded by and faces. One model for the anisotropic growth has been proposed. It is found that slow kinetics favor the formation of single-crystalline Au nanorods.

2011 ◽  
Vol 117-119 ◽  
pp. 958-961 ◽  
Author(s):  
Jun Chen ◽  
Cai Xia Dong ◽  
Yi Jun Zhang ◽  
Xiao Mao Zhou ◽  
Lian Yang Bai

This paper reports a novel colorimetric sensor for pymetrozine based on p-aminobenzenesulfonic acid functionalized silver nanoparticles (p-ABSA-modified Ag NPs), which were characterized by IR spectroscopy, ultraviolet–visible spectroscopy (UV–vis), and transmission electron microscopy (TEM). The newly synthesized p-ABSA-modified Ag NPs are yellow in color due to the intense surface plasmon absorption band centered at 400nm. In the presence of pymetrozine, the yellow p-ABSA-modified Ag NPs solution turns to dark green, with a dramatic surface plasmon absorption band centered at 660nm. Moreover, high selectivity for pymetrozine was approved by the comparative experiments with an absorption ratio of A660/A400 more than 0.7. This highly sensitive sensor allows a direct and rapid quantitative assay of pymetrozine with a colorimetric limited detection concentration of 0.01mg/L.


2018 ◽  
Vol 55 (5B) ◽  
pp. 227
Author(s):  
Phan Ha Nu Diem

In this article, a simple method for the preparation of multi–branched gold nanoparticles from an aqueous solution of silver seeds, cetyl-trimethylammonium bromide (CTAB), HAuCl4, and Pluronic F–127 was described. It was found that morphologies and sizes of gold nanostructures (AuNPs) depended strongly on such experimental parameters as concentrations of Pluronic F–127 and Au3+. The products were characterized by transmission electron microscopy (TEM). Interestingly, the multi – branched AuNPs were found to serve as an effective catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4. Kinetic data have been obtained from monitoring the concentrations of 4-NP and BH4‒ by UV‒vis spectroscopy.


2013 ◽  
Vol 634-638 ◽  
pp. 2228-2231
Author(s):  
Chun Rong Wang ◽  
Xian Zai Yan ◽  
Li Li Yu

The effect of the pH of the preparing solution on the size and shape of gold nanoparticles was studied in the solution containing soybean peptides or β-cyclodextrin (β-CD) as reducing agent. The resulting gold nanostructures were characterized by transmission electron microscopy (TEM), XRD and UV-vis spectra. Different shape of gold nanoparticles such as nanoplates, networked nanowires and spheres were prepared by changing the pH of solution. Electron diffraction pattern showed that the shape changes from plate or network to sphere as the pH of solution is increasing.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
R.R. Russell

Transmission electron microscopy of metallic/intermetallic composite materials is most challenging since the microscopist typically has great difficulty preparing specimens with uniform electron thin areas in adjacent phases. The application of ion milling for thinning foils from such materials has been quite effective. Although composite specimens prepared by ion milling have yielded much microstructural information, this technique has some inherent drawbacks such as the possible generation of ion damage near sample surfaces.


Author(s):  
Tai-Te Chao ◽  
John Sullivan ◽  
Awtar Krishan

Maytansine, a novel ansa macrolide (1), has potent anti-tumor and antimitotic activity (2, 3). It blocks cell cycle traverse in mitosis with resultant accumulation of metaphase cells (4). Inhibition of brain tubulin polymerization in vitro by maytansine has also been reported (3). The C-mitotic effect of this drug is similar to that of the well known Vinca- alkaloids, vinblastine and vincristine. This study was carried out to examine the effects of maytansine on the cell cycle traverse and the fine struc- I ture of human lymphoblasts.Log-phase cultures of CCRF-CEM human lymphoblasts were exposed to maytansine concentrations from 10-6 M to 10-10 M for 18 hrs. Aliquots of cells were removed for cell cycle analysis by flow microfluorometry (FMF) (5) and also processed for transmission electron microscopy (TEM). FMF analysis of cells treated with 10-8 M maytansine showed a reduction in the number of G1 cells and a corresponding build-up of cells with G2/M DNA content.


Sign in / Sign up

Export Citation Format

Share Document