scholarly journals A Comparative Study of Carbon Nanotubes Synthesized from Co/Zn/Al and Fe/Ni/Al Catalyst

2011 ◽  
Vol 8 (3) ◽  
pp. 1014-1021 ◽  
Author(s):  
Ezekiel Dixon Dikio

The catalyst systems Fe/Ni/Al and Co/Zn/Al were synthesized and used in the synthesis of carbon nanotubes. The carbon nanotubes produced were characterized by Field Emission Scanning Electron Microscope(FE-SEM), Energy Dispersive x-ray Spectroscopy(EDS), Raman spectroscopy, Thermogravimetric Analysis(TGA)and Transmission Electron Microscope(TEM). A comparison of the morphological profile of the carbon nanotubes produced from these catalysts indicates the catalyst system Fe/Ni/Al to have produced higher quality carbon nanotubes than the catalyst system Co/Zn/Al.

2012 ◽  
Vol 229-231 ◽  
pp. 247-251 ◽  
Author(s):  
M. Maryam ◽  
A.B. Suriani ◽  
M.S. Shamsudin ◽  
Mohamad Rusop Mahmood

Carbon nanotubes were produced from the aerosol-assisted catalytic CVD method using palm oil as the precursor and ferrocene as the catalyst. The CNTs were yielded at optimized temperature of 700oC and the Field Emission Scanning Electron Microscope showed the image of CNTs produced. Raman Spectroscopy, energy dispersive X-ray and Thermogravimetric Analysis were then used to further study the Raman Spectra, purity and identification of samples.


2000 ◽  
Vol 15 (8) ◽  
pp. 1822-1827 ◽  
Author(s):  
M. Andersson ◽  
P. Alberius-Henning ◽  
K. Jansson ◽  
M. Nygren

Carbon nanotubes, typically of 0.5-μm length and 20-nm diameter, were prepared with good selectivity by disproportionation of CO in He over a Pd/La2O3 catalyst. The catalyst was formed in situ by reduction of a La4PdO7 precursor. The obtained nanotubes had the so-called fishbone structure with the graphitic planes inclined at an angle to the long axis of the nanotube. The effect of CO concentration was studied at 673 °C, and it was found that, among the concentrations studied, 20 vol% CO in the gas was suitable for nanotube growth. The obtained nanotube/La2O3/Pd composite contained typically only 3 wt% nanotubes after 8 h of CO treatment. A process for selective dissolution of La2O3 and Pd was applied, and a product containing 85 wt% nanotubes was obtained. The nanotubes were characterized by high-resolution, transmission, and scanning electron microscope studies, combined with element analyses using energy dispersive spectrometers, x-ray powder diffraction studies, and thermogravimetric analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
N. Kure ◽  
M. N. Hamidon ◽  
S. Azhari ◽  
N. S. Mamat ◽  
H. M. Yusoff ◽  
...  

In this work, a quick and effective method to synthesize carbon nanotubes (CNTs) is reported; a commercial microwave oven of 600 W at 2.45 GHz was utilized to synthesize CNTs from plasma catalytic decomposition of polyethylene. Polyethylene and silicon substrate coated with iron (III) nitrate were placed in the reaction chamber to form the synthesis stock. The CNTs were synthesized at 750°C under atmospheric pressure of 0.81 mbar. Raman spectroscopy and field emission scanning electron microscope revealed the quality and entangled bundles of mixed CNTs from which the diameters of the CNTs were calculated to be between 1.03 and 25.00 nm. High resolution transmission electron microscope further showed that the CNTs obtained by this method are graphitized. Energy dispersive X-ray analysis and thermogravimetric analysis revealed above 98% carbon purity.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2011 ◽  
Vol 221 ◽  
pp. 235-239 ◽  
Author(s):  
Yuan Chao Liu ◽  
Bao Min Sun ◽  
Zhao Yong Ding

Synthesis of carbon nanotubes from V-type pyrolysis flame is a kind of novel method. It needs simple laboratory equipments and normal atmosphere pressure. The V-type pyrolysis flame experimental system is introduced. Carbon source is the carbon monoxide and heat source is from acetylene/air premixed flame. Pentacarbonyl iron, served as catalyst, is transported by spray- pyrolysis method into the flame. The carbon nanotubes were characterized by scanning electron microscope and transmission electron microscope. This study aims to find the formation rule of carbon nanotubes from the V-type pyrolysis flame in different sampling times. The carbon nanotubes with less impurity and high yield were captured successfully in the V-type pyrolysis flame. The diameter of carbon nanotubes was approximate between 10nm and 20nm, and its length was dozens of microns. When the sampling time was below 3 minutes, the growth of carbon nanotubes came into the preparation growth period. The length of the carbon nanotubes increased gradually and the diameter had no obvious change with the extension of sampling time. When the sampling time was continued to the 5th minute, the growth of carbon nanotubes came into the exuberant growth period. The carbon nanotubes growth was finished within 5minutes. Longer sampling time was meaningless after the carbon nanotubes formation.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2013 ◽  
Vol 67 (11) ◽  
Author(s):  
Gantigaiah Krishnamurthy ◽  
Sarika Agarwal

AbstractThe synthesis of well-aggregated carbon nanotubes in the form of bundles was achieved by the catalytic reduction of 1,2-dichlorobenzene by a solvothermal approach. The use of 1,2-dichlorobenzene as a carbon source yielded a comparably good percentage of carbon nanotubes in the range of 60–70 %, at a low reaction temperature of 200°C. The products obtained were analysed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy techniques. The X-ray diffraction studies implied the presence of pure, crystalline, and well-ordered carbon nanotubes. The scanning electron and transmission electron microscopic images revealed the surface morphology, dimensions and the bundled form of the tubes. These micrographs showed the presence of multi-walled carbon nanotubes with an outer diameter of 30–55 nm, inner diameter of 15–30 nm, and lengths of several hundreds of nanometers. Brunauer-Emmett-Teller-based N2 gas adsorption studies were performed to determine the surface area and pore volume of the carbon nanotubes. These carbon nanotubes exhibit a better surface area of 385.30 m2 g−1. In addition, the effects of heating temperature, heating time, amount of catalyst and amount of carbon source on the product yield were investigated.


2012 ◽  
Vol 602-604 ◽  
pp. 183-186 ◽  
Author(s):  
Jing Liu ◽  
Rong Wu ◽  
Jin Li ◽  
Yan Fei Sun ◽  
Ji Kang Jian

In this paper, we report the synthesis of cubic silicon carbide (3C-SiC) nanoparticles by direction reaction of silicon powders and carbon nanotubes. The as-prepared SiC nanoparticles were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and Raman scattering at room temperature. The possible growth mechanism is proposed.


2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


2013 ◽  
Vol 1493 ◽  
pp. 139-144 ◽  
Author(s):  
Punya A. Basnayaka ◽  
Pedro Villalba ◽  
Manoj K. Ram ◽  
Lee Stefanakos ◽  
Ashok Kumar

AbstractIn the present study, we have studied photoelectrochemical properties of poly(3-octathiophene) (P3OT), blending with multi-wall carbon nanotubes (MWCNTs). P3OT blended with MWCNTs was characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Raman spectroscope, and Cyclic Voltammetry (CV) techniques, respectively. The photoelectrochemical current of the MWCNs-P3OT based cell under illumination was investigated by applying a voltage. The blend consisting of 10% MWCNTs in P3OT gave the promising photocurrent in 0.2 M tetra-butyl-ammonium-tetrafluoroborate (TBATFB), electrolyte. Experimental results indicate that photocurrent obtained from MWCNT-P3OT was three times higher than simple P3OT-based conducting polymer. The electrochemical responses of MWCNT-P3OT films in different electrolytes such as 0.2M TBATFB, 0.2 M LiClO4, 1 M H2SO4 and 0.2 M LiBF6 were investigated for comparative photocurrent properties of the photoelectrochemical cell.


Sign in / Sign up

Export Citation Format

Share Document