Photovoltaic properties of multi walled carbon nanotubes - poly(3-octathiophene) conducting polymer blends structures

2013 ◽  
Vol 1493 ◽  
pp. 139-144 ◽  
Author(s):  
Punya A. Basnayaka ◽  
Pedro Villalba ◽  
Manoj K. Ram ◽  
Lee Stefanakos ◽  
Ashok Kumar

AbstractIn the present study, we have studied photoelectrochemical properties of poly(3-octathiophene) (P3OT), blending with multi-wall carbon nanotubes (MWCNTs). P3OT blended with MWCNTs was characterized using Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Raman spectroscope, and Cyclic Voltammetry (CV) techniques, respectively. The photoelectrochemical current of the MWCNs-P3OT based cell under illumination was investigated by applying a voltage. The blend consisting of 10% MWCNTs in P3OT gave the promising photocurrent in 0.2 M tetra-butyl-ammonium-tetrafluoroborate (TBATFB), electrolyte. Experimental results indicate that photocurrent obtained from MWCNT-P3OT was three times higher than simple P3OT-based conducting polymer. The electrochemical responses of MWCNT-P3OT films in different electrolytes such as 0.2M TBATFB, 0.2 M LiClO4, 1 M H2SO4 and 0.2 M LiBF6 were investigated for comparative photocurrent properties of the photoelectrochemical cell.

2016 ◽  
Vol 3 (01) ◽  
Author(s):  
Holia Onggo ◽  
Rike Yudianti ◽  
Endang Ruchiat

Carbon nanotube-rayon composite filaments was fabricated by spinning and coagulation of the mixture of 100mL functionalized carbon nanotube dispersion (containing 0.72 g FCNT) and cellulose xanthate in NaOH solution using viscose process. In the process, CNT was functionalized using mixture of acidic solution ( H2SO4/HNO3, 3:1 v/v). Influence of functionalized (FCNT) and non-functionalized carbon nanotubes (nFCNT) on the fabrication of rayon nanocomposite filament was studied. Physical and morphological properties of the nanocomposite filaments were characterized by single filament tenacity tester, photo micrograph, scanning electron microscope (SEM) and transmission electron microscope (TEM). Filterability and mechanical properties of FCNT-rayon nanocomposite filament greatly improved by reducing clogging constant from 1689 to 153 and increasing tenacity from 2.72 to 3.01 g/denier and decreasing elongation from 57.1 to 36.5% respectively compared with those of nFCNT-rayon nanocomposite filament.Keywords: functionalized multi-walled carbon nanotubes, nanocomposite filament, mechanical properties, filterability, dispersion  ABSTRAKRayon nanocomposite filaments telah dibuat melalui proses pemilinan (spinning) dan koagulasi (coagulation) dari campuran 100 mL larutan functionalized carbon nanotube dispersion (FCNT=0,72 g), selulosa santat dalam larutan NaOH melalui proses viskosa. CNT di functionalisasi (FCNT) menggunakan campuran larutan asam (H2SO4/HNO3, 3:1 v/v). Pengaruh fungsionalisasi CNT pada pembuatan rayon nanocomposite filaments dipelajari dengan cara membandingkannya dengan CNT tanpa fungsionalisasi (nFCNT). Sifat fisik dan morfologi dari rayon-nanocomposite filaments dikarakterisasi menggunakan tenacity tester, photo micrograph, scanning electron microscope (SEM) dan transmission electron microscope (TEM). Viskosa FCNT memiliki daya saring (Kw) cukup baik yaitu 155, sedangkan viskosa nFCNT  memiliki daya saring 1689 (tidak baik). Kekuatan mekanik dari FCNT-rayon nanocomposite filaments berturut turut adalah 3,01 g/denier (tenacity), dan 36,5% (elongation), lebih baik dibandingkan dengan nFCNT-rayon nanocomposite filament: 2,72 g/denier (tenacity) dan 57,1% (elongation).Kata kunci: fungsionalisasi multi-walled carbon nanotubes, rayon-nanocomposite filament, sifat mekanik, daya saring, dispersi


2003 ◽  
Vol 772 ◽  
Author(s):  
T. Seeger ◽  
G. de la Fuente ◽  
W.K. Maser ◽  
A.M. Benito ◽  
A. Righi ◽  
...  

AbstractCarbon nanotubes (CNT) are interesting candidates for the reinforcement in robust composites and for conducting fillers in polymers due to their fascinating electronic and mechanical properties. For the first time, we report the incorporation of multi walled carbon nanotubes (MWNTs) into silica-glass surfaces by means of partial surface-melting caused by a continuous wave Nd:YAG laser. MWNTs were detected being well incorporated in the silica-surface. The composites are characterized using scanning electron microscopy (SEM) and Raman-spectroscopy. A model for the composite-formation is proposed based on heatabsorption by MWNTs and a partial melting of the silica-surface.


2019 ◽  
Vol 30 (8) ◽  
pp. 1216-1224 ◽  
Author(s):  
Mohammad Charara ◽  
Mohammad Abshirini ◽  
Mrinal C Saha ◽  
M Cengiz Altan ◽  
Yingtao Liu

This article presents three-dimensional printed and highly sensitive polydimethylsiloxane/multi-walled carbon nanotube sensors for compressive strain and pressure measurements. An electrically conductive polydimethylsiloxane/multi-walled carbon nanotube nanocomposite is developed to three-dimensional print compression sensors in a freestanding and layer-by-layer manner. The dispersion of multi-walled carbon nanotubes in polydimethylsiloxane allows the uncured nanocomposite to stand freely without any support throughout the printing process. The cross section of the compression sensors is examined under scanning electron microscope to identify the microstructure of nanocomposites, revealing good dispersion of multi-walled carbon nanotubes within the polydimethylsiloxane matrix. The sensor’s sensitivity was characterized under cyclic compression loading at various max strains, showing an especially high sensitivity at lower strains. The sensing capability of the three-dimensional printed nanocomposites shows minimum variation at various applied strain rates, indicating its versatile potential in a wide range of applications. Cyclic tests under compressive loading for over 8 h demonstrate that the long-term sensing performance is consistent. Finally, in situ micromechanical compressive tests under scanning electron microscope validated the sensor’s piezoresistive mechanism, showing the rearrangement, reorientation, and bending of the multi-walled carbon nanotubes under compressive loads, were the main reasons that lead to the piezoresistive sensing capabilities in the three-dimensional printed nanocomposites.


2015 ◽  
Vol 19 (04) ◽  
pp. 622-630 ◽  
Author(s):  
Saeed Rayati ◽  
Zahra Sheybanifard

In the present work, oxidation of alkenes with hydrogen peroxide in the presence of meso-tetrakis(4-hydroxyphenyl)porphyrinatoiron(III) chloride supported onto surface of functionalized multi-wall carbon nanotubes (FMWCNT), [ Fe ( THPP ) Cl@MWCNT ], is reported. The simple heterogeneous catalyst was characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and also thermal analysis. The amount of the catalyst loaded on the nanotubes was determined by atomic absorption spectroscopy. This heterogeneous catalyst proved to be an efficient and green catalyst and was successfully able to activate hydrogen peroxide without any additive toward the oxidation of alkenes in ethanol as a green solvent. Performance of the catalyst in oxidation of various alkenes was inspected under reflux, ultrasonic irradiation and mechanical stirring. Moreover, the catalyst can be reused several times under similar conditions.


2014 ◽  
Vol 926-930 ◽  
pp. 258-261
Author(s):  
Jing Heng Deng ◽  
Kan Ping Yu ◽  
Jian Guo Xie

Hierarchical nanostructure Fe3O4/multi-walled carbon nanotubes (Fe3O4/MWCNTs) were prepared by solvothermal process using acid treated MWCNTs and iron acetylacetonate in ethylene glycol as reduction reagent. The materials were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET). The results showed that petal-like hierarchical Fe3O4 grew on MWCNTs and the Fe3O4 nanoparticles had diameters in the range of 55-110 nm. It was a facile approach to grow hierarchical nanoFe3O4.


2016 ◽  
Vol 30 (36) ◽  
pp. 1650418 ◽  
Author(s):  
A. I. Abou-Aly ◽  
M. Anas ◽  
Shaker Ebrahim ◽  
R. Awad ◽  
I. G. Eldeen

The effect of single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) addition on the phase formation and the superconducting properties of GdBa2Cu3O[Formula: see text] phase has been studied. Therefore, composite superconductor samples of type (CNTs)[Formula: see text] GdBa2Cu3O[Formula: see text], 0.0 [Formula: see text] 0.1 wt.% have been synthesized by a standard solid-state reaction technique. The samples have been characterized using X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of XRD show an enhancement in the phase formation up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively. SEM and TEM reveal that CNTs form an electrical network resulting in well-connected superconducting grains. The electrical properties of the prepared samples have been examined by electric resistivity and I–V measurements, and their results reinforce the XRD, SEM and TEM. Consequently, both [Formula: see text] and [Formula: see text] improve as the addition percentage increases up to 0.06 wt.% and 0.08 wt.% for SWCNTs and MWCNTs, respectively.


2009 ◽  
Vol 81 (12) ◽  
pp. 2317-2325 ◽  
Author(s):  
Wei-De Zhang ◽  
Jin Chen

Strongly bonded arrays of vertically aligned, multi-walled carbon nanotubes (MWNTs) have been successfully grown on Ta foils, and provide a convenient basis for fabricating electrodes with high conductivity and stability. The MWNT arrays were further coated by nanostructured MnO2 through reacting with KMnO4 solution at room temperature. The morphology of the MnO2/MWNT nanocomposite was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the MnO2 is a beehive-like nanostructure that is homogeneously and densely coated on the surface of the MWNTs. The capacitance of the MWNT electrode was significantly increased from 0.14 to 6.81 mF cm–2 after being modified with nanostructured MnO2, that is, the mass-specific capacitance of the bare and MnO2-modified MWNTs was about 33 and 446 F g–1, respectively. The MnO2/MWNT nanocomposite on Ta foils could be potential for developing a supercapacitor.


2014 ◽  
Vol 50 (51) ◽  
pp. 6744-6747 ◽  
Author(s):  
A. E. Goode ◽  
N. D. M. Hine ◽  
S. Chen ◽  
S. D. Bergin ◽  
M. S. P. Shaffer ◽  
...  

Functional peaks have been mapped across individual multi-walled CNTs with low-dose, monochromated electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM).


2008 ◽  
Vol 47-50 ◽  
pp. 765-768 ◽  
Author(s):  
Feng Dan Jiang ◽  
Guo Hua Hu ◽  
Li Qun Zhang

A melt blending process was employed to prepare nano-composites based on thermoplastic polyurethane (TPU) and multi-walled carbon nanotubes (MWNT). The content of MWNT filled in TPU was increased till 40phr (parts per hundreds of rubber). Scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that the unmodified MWNT were dispersed uniformly in the TPU matrix beyond expectation. Dynamic mechanical thermal analysis (DMTA) test demonstrated that the nano-composites possessed greatly increased modulus, and the flowing temperature moved to higher temperature with increasing MWNT content. Moreover, the nano-composites exhibited improved wear resistance, evidently increased thermal conductivity, and prominently raised electrical conductivity that might mean the TPU/MWNT nano-composites have potential application as multi-functional materials.


Sign in / Sign up

Export Citation Format

Share Document