scholarly journals Development of Analytical Method for Predicting Residual Mechanical Properties of Corroded Steel Plates

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
J. M. R. S. Appuhamy ◽  
M. Ohga ◽  
T. Kaita ◽  
K. Fujii ◽  
P. B. R. Dissanayake

Bridge infrastructure maintenance and assurance of adequate safety is of paramount importance in transportation engineering and maintenance management industry. Corrosion causes strength deterioration, leading to impairment of its operation and progressive weakening of the structure. Since the actual corroded surfaces are different from each other, only experimental approach is not enough to estimate the remaining strength of corroded members. However, in modern practices, numerical simulation is being used to replace the time-consuming and expensive experimental work and to comprehend on the lack of knowledge on mechanical behavior, stress distribution, ultimate behavior, and so on. This paper presents the nonlinear FEM analyses results of many corroded steel plates and compares them with their respective tensile coupon tests. Further, the feasibility of establishing an accurate analytical methodology to predict the residual strength capacities of a corroded steel member with lesser number of measuring points is also discussed.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 846
Author(s):  
Hastia Asadi ◽  
Joerg Uhlemann ◽  
Natalie Stranghoener ◽  
Mathias Ulbricht

Polytetrafluoroethylene (PTFE)-coated glass fiber fabrics are used for long-lasting membrane structures due to their outstanding mechanical properties, chemical stabilities, and satisfying service life. During their operation time, different environmental impacts might influence their performance, especially regarding the mechanical properties. In this contribution, the impact of water on the tensile strength deterioration was assessed experimentally, providing evidence of considerable but partially reversible loss of strength by up to 20% among the various types of investigated industrially established fabrics.


2014 ◽  
Vol 496-500 ◽  
pp. 392-395 ◽  
Author(s):  
Tao Zhang ◽  
Hua Xing Hou ◽  
Jun Ping Chen

The influence of Ti/N ratio on the effective boron and mechanical properties was investigated by analyzing data from low carbon boron alloyed bainitic steel plates. The result shows Ti/N ratio varies with effective boron value. Less than 50% effective boron was obtained when Ti/N ratio is below 3.3, nearly 90% effective boron is obtained when ratio Ti/N is more than 4; Adding enough Titanium is an effective and economic way to improve qualified ratio of bainitic steel plate. The Ti content between 0.010% and 0.030% does not have obvious effect on the toughness of the bainitic steel;


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


2017 ◽  
Vol 84 (8) ◽  
Author(s):  
Ruike Zhao ◽  
Xuanhe Zhao

Structures of thin films bonded on thick substrates are abundant in biological systems and engineering applications. Mismatch strains due to expansion of the films or shrinkage of the substrates can induce various modes of surface instabilities such as wrinkling, creasing, period doubling, folding, ridging, and delamination. In many cases, the film–substrate structures are not flat but curved. While it is known that the surface instabilities can be controlled by film–substrate mechanical properties, adhesion and mismatch strain, effects of the structures’ curvature on multiple modes of instabilities have not been well understood. In this paper, we provide a systematic study on the formation of multimodal surface instabilities on film–substrate tubular structures with different curvatures through combined theoretical analysis and numerical simulation. We first introduce a method to quantitatively categorize various instability patterns by analyzing their wave frequencies using fast Fourier transform (FFT). We show that the curved film–substrate structures delay the critical mismatch strain for wrinkling when the system modulus ratio between the film and substrate is relatively large, compared with flat ones with otherwise the same properties. In addition, concave structures promote creasing and folding, and suppress ridging. On the contrary, convex structures promote ridging and suppress creasing and folding. A set of phase diagrams are calculated to guide future design and analysis of multimodal surface instabilities in curved structures.


Procedia CIRP ◽  
2014 ◽  
Vol 13 ◽  
pp. 230-236 ◽  
Author(s):  
Athanasios Kolios ◽  
Sumant Srikanth ◽  
Konstantinos Salonitis

2016 ◽  
Vol 851 ◽  
pp. 168-172
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
Tegar Rileh Argihono ◽  
Ryan Sutrisno

Mechanical and microstructure of double side weld with various angle groove was studied in this research. LR Gr A steel plates (12 mm thickness) were welded using GMAW with corresponding 180 A, 23 V, and 20 l/min respectively with current, voltage, and gas flow. Shielding gas and filler metals used are argon and ER 70S-6. The angle groove that used were 20⁰, 40⁰ and 60⁰. The measured of mechanical properties with regard to hardness, toughness and strength using, Vickers hardness test, Charpy impact test and tensile test respectively The microstructure examined with optical microscope. The results show that the highest hardness values found in welds with groove angle 40ͦ. The transition temperatures of weld metals are at temperatures between -20°C to 0°C. Weld metals with all variations of the groove angle has a value of less than 0.1 mmpy. Microstructure of base metals and HAZ were ferrite and pearlite. While the microstructure of weld metals are accicular ferrite, grain boundary ferrite and Widmanstatten ferrite.


Sign in / Sign up

Export Citation Format

Share Document