scholarly journals Amiloride-Sensitive Sodium Channels and Pulmonary Edema

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Mike Althaus ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

The development of pulmonary edema can be considered as a combination of alveolar flooding via increased fluid filtration, impaired alveolar-capillary barrier integrity, and disturbed resolution due to decreased alveolar fluid clearance. An important mechanism regulating alveolar fluid clearance is sodium transport across the alveolar epithelium. Transepithelial sodium transport is largely dependent on the activity of sodium channels in alveolar epithelial cells. This paper describes how sodium channels contribute to alveolar fluid clearance under physiological conditions and how deregulation of sodium channel activity might contribute to the pathogenesis of lung diseases associated with pulmonary edema. Furthermore, sodium channels as putative molecular targets for the treatment of pulmonary edema are discussed.

2003 ◽  
Vol 83 (2) ◽  
pp. 309-336 ◽  
Author(s):  
Alan R. Burns ◽  
C. Wayne Smith ◽  
David C. Walker

Neutrophil emigration in the lung differs substantially from that in systemic vascular beds where extravasation occurs primarily through postcapillary venules. Migration into the alveolus occurs directly from alveolar capillaries and appears to progress through a sequence of steps uniquely influenced by the cellular anatomy and organization of the alveolar wall. The cascade of adhesive and stimulatory events so critical to the extravasation of neutrophils from postcapillary venules in many tissues is not evident in this setting. Compelling evidence exists for unique cascades of biophysical, adhesive, stimulatory, and guidance factors that arrest neutrophils in the alveolar capillary bed and direct their movement through the endothelium, interstitial space, and alveolar epithelium. A prominent path accessible to the neutrophil appears to be determined by the structural interactions of endothelial cells, interstitial fibroblasts, as well as type I and type II alveolar epithelial cells.


2007 ◽  
Vol 292 (2) ◽  
pp. F586-F592 ◽  
Author(s):  
Lúcia Andrade ◽  
Adílson C. Rodrigues ◽  
Talita R. C. Sanches ◽  
Rodrigo B. Souza ◽  
Antonio Carlos Seguro

Leptospirosis is a public health problem worldwide. Severe leptospirosis manifests as pulmonary edema leading to acute respiratory distress syndrome and polyuric acute renal failure (ARF). The etiology of leptospirosis-induced pulmonary edema is unclear. Lung edema clearance is largely affected by active sodium transport out of the alveoli rather than by reversal of the Starling forces. The objective of this study was to profile leptospirosis-induced ARF and pulmonary edema. We inoculated hamsters with leptospires and collected 24-h urine samples on postinoculation day 4. On day 5, the animals were killed, whole blood was collected, and the kidneys and lungs were removed. Immunoblotting was used to determine expression and abundance of water and sodium transporters. Leptospirosis-induced ARF resulted in natriuresis, lower creatinine clearance, and impaired urinary concentrating ability. Renal expression of the sodium/hydrogen exchanger isoform 3 and of aquaporin 2 was lower in infected animals, whereas that of the Na-K-2Cl cotransporter NKCC2 was higher. Leptospirosis-induced lesions, predominantly in the proximal tubule, were responsible for the polyuria and natriuresis observed. The polyuria might also be attributed to reduced aquaporin 2 expression and the attendant urinary concentrating defect. In the lungs, expression of the epithelial sodium channel was lower, and NKCC1 expression was upregulated. We found that leptospirosis profoundly influences the sodium transport capacity of alveolar epithelial cells and that impaired pulmonary fluid handling can impair pulmonary function, increasing the chance of lung injury. Greater knowledge regarding sodium transporter dysregulation in the lungs and kidneys can provide new perspectives on leptospirosis treatment.


1989 ◽  
Vol 256 (3) ◽  
pp. C688-C693 ◽  
Author(s):  
J. M. Cheek ◽  
K. J. Kim ◽  
E. D. Crandall

Because the pulmonary alveolar epithelium separates air spaces from a fluid-filled compartment, it is expected that this barrier would be highly resistant to the flow of solutes and water. Investigation of alveolar epithelial resistance has been limited due to the complex anatomy of adult mammalian lung. Previous efforts to study isolated alveolar epithelium cultured on porous substrata yielded leaky monolayers. In this study, alveolar epithelial cells isolated from rat lungs and grown on tissue culture-treated Nucleopore filters resulted in tight monolayers with transepithelial resistance greater than 2,000 omega.cm2. Changes in bioelectric properties of these alveolar epithelial monolayers in response to ouabain, amiloride, and terbutaline are consistent with active sodium transport across a polarized barrier. 22Na flux measurements under short-circuit conditions directly confirm net transepithelial absorption of sodium by alveolar epithelial cells in the apical to basolateral direction, comparable to the observed short-circuit current (4.37 microA/cm2). The transport properties of these tight monolayers may be representative of the characteristics of the mammalian alveolar epithelial barrier in vivo.


2020 ◽  
Vol 318 (4) ◽  
pp. L787-L800
Author(s):  
Mengnan Wang ◽  
Xiaoxia Guo ◽  
Huiying Zhao ◽  
Jie Lv ◽  
Huixia Wang ◽  
...  

Clinical studies have established that the capacity of removing excess fluid from alveoli is impaired in most patients with acute respiratory distress syndrome. Impaired alveolar fluid clearance (AFC) correlates with poor outcomes. Adenosine A2B receptor (A2BAR) has the lowest affinity with adenosine among four adenosine receptors. It is documented that A2BAR can activate adenylyl cyclase (AC) resulting in elevated cAMP. Based on the understanding that cAMP is a key regulator of epithelial sodium channel (ENaC), which is the limited step in sodium transport, we hypothesized that A2BAR signaling may affect AFC in acute lung injury (ALI) through regulating ENaC via cAMP, thus attenuating pulmonary edema. To address this, we utilized pharmacological approaches to determine the role of A2BAR in AFC in rats with endotoxin-induced lung injury and further focused on the mechanisms in vitro. We observed elevated pulmonary A2BAR level in rats with ALI and the similar upregulation in alveolar epithelial cells exposed to LPS. A2BAR stimulation significantly attenuated pulmonary edema during ALI, an effect that was associated with enhanced AFC and increased ENaC expression. The regulatory effects of A2BAR on ENaC-α expression were further verified in cultured alveolar epithelial type II (ATII) cells. More importantly, activation of A2BAR dramatically increased amiloride-sensitive Na+ currents in ATII cells. Moreover, we observed that A2BAR activation stimulated cAMP accumulation, whereas the cAMP inhibitor abolished the regulatory effect of A2BAR on ENaC-α expression, suggesting that A2BAR activation regulates ENaC-α expression via cAMP-dependent mechanism. Together, these findings suggest that signaling through alveolar epithelial A2BAR promotes alveolar fluid balance during endotoxin-induced ALI by regulating ENaC via cAMP pathway, raising the hopes for treatment of pulmonary edema due to ALI.


1960 ◽  
Vol 7 (2) ◽  
pp. 357-366 ◽  
Author(s):  
H. E. Karrer

Diluted India ink was instilled into the nasal cavity of mice and the lungs of some animals were fixed with osmium tetroxide at various intervals after one instillation. The lungs of other animals were fixed after 4, 7, 9, 16, or 18 daily instillations. The India ink was found to be phagocytized almost exclusively by the free alveolar macrophages. A few particles are occasionally seen within thin portions of alveolar epithelium, within the "small" alveolar epithelial cells, or within occasional leukocytes in the lumina of alveoli. The particles are ingested by an invagination process of the plasma membrane resulting in the formation of intracellular vesicles and vacuoles. Ultimately large amounts of India ink accumulate in the cell, occupying substantial portions of the cytoplasm. The surfaces of phagocytizing macrophages show signs of intense motility. Their cytoplasm contains numerous particles, resembling Palade particles, and a large amount of rough surfaced endoplasmic reticulum. These structures are interpreted as indicative of protein synthesis. At the level of resolution achieved in this study the membranes of this reticulum appear as single dense "lines." On the other hand, the plasma membrane and the limiting membranes of vesicles and of vacuoles often exhibit the double-line structure typical of unit membranes (Robertson, 37). The inclusion bodies appear to be the product of phagocytosis. It is believed that some of them derive from the vacuoles mentioned above, and that they correspond to similar structures seen in phase contrast cinemicrographs of culture cells. Their matrix represents phagocytized material. Certain structures within this matrix are considered as secondary and some of these structures possess an ordered form probably indicative of the presence of lipid. The possible origin and the fate of alveolar macrophages are briefly discussed.


1997 ◽  
Vol 272 (3) ◽  
pp. L407-L412 ◽  
Author(s):  
G. Yue ◽  
S. Matalon

We instilled 4 ml isotonic fluid containing trace amounts of fluorescently labeled dextran (molecular mass 150 kDa) in the lungs of rats exposed to either 85% O(2) for 7 days or to 85% O(2) for 7 days and 100% O(2) for 3 days. We withdrew the fluid every hour for a 3-h period and calculated alveolar fluid clearance (AFC) from changes in dextran concentration. Postinstillation (3 h), AFC values in the control and the two hyperoxic groups were 51 +/- 1, 63 +/- 2, and 62 +/- 3 (SE), respectively (%instilled volume; n > or = 5; P < 0.05). Addition of either 1 mM amiloride or N-ethyl-N-isopropyl amiloride (EIPA) in the instillate decreased the AFC values in all groups 3 h later to approximately 30% of instilled volume. Instillation of phenamil, an irreversible blocker of epithelial Na+ channels into the lungs of rats exposed to 85% O(2) for 7 days and 100% O(2) for 2 days, resulted in a significant increase of their extravascular lung fluid volumes 24 h later. These results demonstrate the existence of EIPA-inhibitable Na+ channels in alveolar epithelial cells in vivo and indicate that an increase in Na+ transport plays an important role in limiting the amount of alveolar edema in O(2)-damaged lungs.


1999 ◽  
Vol 87 (4) ◽  
pp. 1301-1312 ◽  
Author(s):  
G. M. Verghese ◽  
L. B. Ware ◽  
B. A. Matthay ◽  
M. A. Matthay

To characterize the rate and regulation of alveolar fluid clearance in the uninjured human lung, pulmonary edema fluid and plasma were sampled within the first 4 h after tracheal intubation in 65 mechanically ventilated patients with severe hydrostatic pulmonary edema. Alveolar fluid clearance was calculated from the change in pulmonary edema fluid protein concentration over time. Overall, 75% of patients had intact alveolar fluid clearance (≥3%/h). Maximal alveolar fluid clearance (≥14%/h) was present in 38% of patients, with a mean rate of 25 ± 12%/h. Hemodynamic factors (including pulmonary arterial wedge pressure and left ventricular ejection fraction) and plasma epinephrine levels did not correlate with impaired or intact alveolar fluid clearance. Impaired alveolar fluid clearance was associated with a lower arterial pH and a higher Simplified Acute Physiology Score II. These factors may be markers of systemic hypoperfusion, which has been reported to impair alveolar fluid clearance by oxidant-mediated mechanisms. Finally, intact alveolar fluid clearance was associated with a greater improvement in oxygenation at 24 h along with a trend toward shorter duration of mechanical ventilation and an 18% lower hospital mortality. In summary, alveolar fluid clearance in humans may be rapid in the absence of alveolar epithelial injury. Catecholamine-independent factors are important in the regulation of alveolar fluid clearance in patients with severe hydrostatic pulmonary edema.


Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 83 ◽  
Author(s):  
Francesco Salton ◽  
Maria Volpe ◽  
Marco Confalonieri

Idiopathic pulmonary fibrosis (IPF) is a serious disease of the lung, which leads to extensive parenchymal scarring and death from respiratory failure. The most accepted hypothesis for IPF pathogenesis relies on the inability of the alveolar epithelium to regenerate after injury. Alveolar epithelial cells become apoptotic and rare, fibroblasts/myofibroblasts accumulate and extracellular matrix (ECM) is deposited in response to the aberrant activation of several pathways that are physiologically implicated in alveologenesis and repair but also favor the creation of excessive fibrosis via different mechanisms, including epithelial–mesenchymal transition (EMT). EMT is a pathophysiological process in which epithelial cells lose part of their characteristics and markers, while gaining mesenchymal ones. A role for EMT in the pathogenesis of IPF has been widely hypothesized and indirectly demonstrated; however, precise definition of its mechanisms and relevance has been hindered by the lack of a reliable animal model and needs further studies. The overall available evidence conceptualizes EMT as an alternative cell and tissue normal regeneration, which could open the way to novel diagnostic and prognostic biomarkers, as well as to more effective treatment options.


1990 ◽  
Vol 68 (4) ◽  
pp. 1354-1359 ◽  
Author(s):  
R. K. Merchant ◽  
M. W. Peterson ◽  
G. W. Hunninghake

Alveolar epithelial cell injury and increased alveolar-capillary membrane permeability are important features of acute silicosis. To determine whether silica particles contribute directly to this increased permeability, we measured paracellular permeability of rat alveolar epithelium after exposure to silica, in vitro, using markers of the extracellular space. Silica (Minusil) markedly increased permeability in a dose- and time-dependent manner. This was not the result of cytolytic injury, because lactate dehydrogenase release from monolayers exposed to silica was not increased. Pretreatment of the silica with serum, charged dextrans, or aluminum sulfate blocked the increase in permeability. Scanning electron microscopy demonstrated adherence of the silica to the surface of the alveolar epithelial cells. Thus silica can directly increase permeability of alveolar epithelium.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Parnpen Viriyavejakul ◽  
Chuchard Punsawad

Pulmonary edema (PE) is a major cause of pulmonary manifestations of severe Plasmodium falciparum malaria and is usually associated with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The sphingosine kinase-1 (SphK-1)/sphingosine-1-phosphate receptor-3 (S1PR-3) pathway has recently been reported to affect the pathogenesis of lung injury, but the expression of these proteins in the lungs of severe P. falciparum malaria patients has not been investigated. The cellular expression of SphK-1 and S1PR-3 in lung tissues from autopsied patients with P. falciparum malaria was investigated using immunohistochemistry (IHC). Lung tissues from patients who died of severe P. falciparum malaria were classified into two groups based on histopathological findings: those with PE (18 patients) and those without PE (non-PE, 19 patients). Ten samples of normal lung tissues were used as the control group. The protein expression levels of SphK-1 and S1PR-3 were significantly upregulated in endothelial cells (ECs), alveolar epithelial cells, and alveolar macrophages (AMs) in the lungs of severe P. falciparum malaria patients with PE compared to those in the non-PE and control groups (all p<0.001). In addition, the SphK-1 and S1PR-3 expression levels were significantly positively correlated in pulmonary ECs (rs=0.922, p<0.001), alveolar epithelial cells (rs=0.995, p<0.001), and AMs (rs=0.969, p<0.001). In conclusion, both the SphK-1 and S1PR-3 proteins were overexpressed in the lung tissues of severe P. falciparum malaria patients with PE, suggesting that SphK-1 and S1PR-3 mediate the pathogenesis of PE in severe malaria. Targeting the regulation of SphK-1 and/or S1PR-3 may be an approach to treat pulmonary complications in severe P. falciparum patients.


Sign in / Sign up

Export Citation Format

Share Document