scholarly journals Combined Application of UV Photolysis and Ozonation with Biological Aerating Filter in Tertiary Wastewater Treatment

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zhaoqian Jing ◽  
Shiwei Cao

To enhance the biodegradability of residual organic pollutants in secondary effluent of wastewater treatment plants, UV photolysis and ozonation were used in combination as pretreatment before a biological aerating filter (BAF). The results indicated that UV photolysis could not remove much COD (chemical oxygen demand), and the performance of ozonation was better than the former. With UV photolysis combined with ozonation (UV/O3), COD removal was much higher than the sum of that with UV photolysis and ozonation alone, which indicated that UV photolysis could efficiently promote COD removal during ozonation. This pretreatment also improved molecular weight distribution (MWD) and biodegradability greatly. Proportion of organic compounds with molecular weight (MW) <3 kDalton was increased from 51.9% to 85.9%. COD removal rates with BAF and O3/BAF were only about 25% and 38%, respectively. When UV/O3oxidation was combined with BAF, the average COD removal rate reached above 61%, which was about 2.5 times of that with BAF alone. With influent COD ranging from 65 to 84 mg/L, the effluent COD was stably in the scope of 23–31 mg/L. The combination of UV/O3oxidation with BAF was quite efficient in organic pollutants removal for tertiary wastewater treatment.

Archaea ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Shuo Wang ◽  
Jianzheng Li ◽  
Guochen Zheng ◽  
Guocheng Du ◽  
Ji Li

Hydrogen-producing acetogens (HPA) have a transitional role in anaerobic wastewater treatment. Thus, bioaugmentation with HPA cultures can enhance the chemical oxygen demand (COD) removal efficiency and CH4yield of anaerobic wastewater treatment. Cultures with high degradation capacities for propionic acid and butyric acid were obtained through continuous subculture in enrichment medium and were designated as Z08 and Z12. Bioaugmentation with Z08 and Z12 increased CH4production by glucose removal to 1.58. Bioaugmentation with Z08 and Z12 increased the COD removal rate in molasses wastewater from 71.60% to 85.84%. The specific H2and CH4yields from COD removal increased by factors of 1.54 and 1.63, respectively. Results show that bioaugmentation with HPA-dominated cultures can improve CH4production from COD removal. Furthermore, hydrogen-producing acetogenesis was identified as the rate-limiting step in anaerobic wastewater treatment.


Author(s):  
P Ravi Kumar ◽  
Liza Britta Pinto ◽  
RK Somashekar

Bangalore city hosts two Urban Wastewater Treatment Plants (UWTPs) towards the periphery of Vrishabhavathi valley, located in Nellakedaranahalli village of Nagasandra and Mailasandra Village, Karnataka, India. These plants are designed and constructed with an aim to manage wastewater so as to minimize and/or remove organic matter, solids, nutrients, disease-causing organisms and other pollutants, before it reenters a water body. It was revealed from the performance study that efficiency of the two treatment plants was poor with respect to removal of total dissolved solids in contrast to the removal/reduction in other parameters like total suspended solids, BOD and COD. In Mailasandra STP, TDS, TSS, BOD, and COD removal efficiency was 20.01, 94.51, 94.98 and 76.26 % and respectively, while in Nagasandra STP, TDS, TSS, BOD, and COD removal efficiency was 28.45, 99.0, 97.6 and 91.60 % respectively. The order of reduction efficiency was TDS < COD < TSS < BOD and TDS < COD < BOD < TSS respectively in Mailasandra and Nagasandra STPs. Additionally, the problems associated with the operation and maintenance of wastewater treatment plants is discussed. Keywords: Total dissolved solids; Chemical oxygen demand; Biochemical oxygen demand; Aeration tank; Mixed liquor suspended solids; Sludge volume index DOI: 10.3126/kuset.v6i2.4020Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.115-125


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
A. Iborra-Clar ◽  
J.A. Mendoza-Roca ◽  
A. Bes-Pií ◽  
J.J. Morenilla-Martínez ◽  
I. Bernácer-Bonora ◽  
...  

Rainfall diminution in the last years has entailed water scarcity in plenty of European regions, especially in Mediterranean areas. As a consequence, regional water authorities have enhanced wastewater reclamation and reuse. Thus, the implementation of tertiary treatments has become of paramount importance in the municipal wastewater treatment plants (WWTP) of Valencian Region (Spain). Conventional tertiary treatments consist of a physico-chemical treatment of the secondary effluent followed by sand filtration and UV radiation. However, the addition of coagulants and flocculants sometimes does not contribute significantly in the final water quality. In this work, results of 20-months operation of three WWTP in Valencian Region with different tertiary treatments (two without chemicals addition and another with chemicals addition) are discussed. Besides, experiments with a 2 m3/h pilot plant located in the WWTP Quart-Benager in Valencia were performed in order to evaluate with the same secondary effluent the effect of the chemicals addition on the final water quality. Results showed that the addition of chemicals did not improve the final water quality significantly. These results were observed both comparing the three full scale plants and in the pilot plant operation.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 798
Author(s):  
Samendra P. Sherchan ◽  
Shalina Shahin ◽  
Jeenal Patel ◽  
Lauren M. Ward ◽  
Sarmila Tandukar ◽  
...  

In this study, we investigated the occurrence of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) RNA in primary influent (n = 42), secondary effluent (n = 24) and tertiary treated effluent (n = 34) collected from six wastewater treatment plants (WWTPs A–F) in Virginia (WWTP A), Florida (WWTPs B, C, and D), and Georgia (WWTPs E and F) in the United States during April–July 2020. Of the 100 wastewater samples analyzed, eight (19%) untreated wastewater samples collected from the primary influents contained SARS-CoV-2 RNA as measured by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. SARS-CoV-2 RNA were detected in influent wastewater samples collected from WWTP A (Virginia), WWTPs E and F (Georgia) and WWTP D (Florida). Secondary and tertiary effluent samples were not positive for SARS-CoV-2 RNA indicating the treatment processes in these WWTPs potentially removed SARS-CoV-2 RNA during the secondary and tertiary treatment processes. However, further studies are needed to understand the log removal values (LRVs) and transmission risks of SARS-CoV-2 RNA through analyzing wastewater samples from a wider range of WWTPs.


Author(s):  
Jakub Zdarta ◽  
Katarzyna Jankowska ◽  
Karolina Bachosz ◽  
Oliwia Degórska ◽  
Karolina Kaźmierczak ◽  
...  

Abstract Purpose of Review In the presented review, we have summarized recent achievements on the use of immobilized oxidoreductases for biodegradation of hazardous organic pollutants including mainly dyes, pharmaceuticals, phenols, and bisphenols. In order to facilitate process optimization and achievement of high removal rates, effect of various process conditions on biodegradation has been highlighted and discussed. Recent Findings Current reports clearly show that immobilized oxidoreductases are capable of efficient conversion of organic pollutants, usually reaching over 90% of removal rate. Further, immobilized enzymes showed great recyclability potential, allowing their reuse in numerous of catalytic cycles. Summary Collected data clearly indicates immobilized oxidoreductases as an efficient biocatalytic tools for removal of hazardous phenolic compounds, making them a promising option for future water purification. Data shows, however, that both immobilization and biodegradation conditions affect conversion efficiency; therefore, process optimization is required to achieve high removal rates. Nevertheless, we have demonstrated future trends and highlighted several issues that have to be solved in the near-future research, to facilitate large-scale application of the immobilized oxidoreductases in wastewater treatment.


2020 ◽  
Vol 202 ◽  
pp. 08007
Author(s):  
Wahyu Zuli Pratiwi ◽  
Hadiyanto Hadiyanto ◽  
Purwanto Purwanto ◽  
Muthi’ah Nur Fadlilah

Microalgae-Microbial Fuel Cells (MMFCs) are very popular to be used to treat organic waste. MMFCs can function as an energy-producing wastewater pre-treatment system. Wastewater can provide an adequate supply of nutrients, support the large capacity of biofuel production, and can be integrated with existing wastewater treatment infrastructure. The reduced content of Chemical Oxygen Demand (COD) is one way to measure the efficiency of wastewater treatment. MMFCs reactors are made in the form of two chambers (anode and cathode) both of which are connected by a salt bridge. Tofu wastewater as an anode and Spirulina sp as a cathode. To improve MFCs performance which is to obtain maximum COD removal and electricity generation, nutrient NaHCO3 as the nutrient carbon source for Spirulina sp was varied. The system running phase on 12 days. The results were Spirulina sp treated with MFCs technology has better growth than non-MFCs. The MMFC generated a maximum power density of 21.728 mW/cm2 and achieved 57.37% COD removal. These results showed that the combined process was effective in treating tofu wastewater.


2014 ◽  
Vol 926-930 ◽  
pp. 4361-4364
Author(s):  
Xiao Qiao Song

When straw pulp papermaking wastewater was treated by the process of coagu-flocculation and nuclear-flocculation, there were still high CODCr. UV254 can reflect organic pollutants and organic pollutants of unsaturated aromatic ring, carbon-carbon double bond. With the decrease of molecular weight of organic pollutants, absorption of ultraviolet light will decrease. Indirectly, it reflectd that the combination process had a good removal effect on high molecular aromatic hydrocarbons difficult to be biodegraded. Meanwhile it can improve the the biodegradability. It used the activated sludge process as subsequent process of coagulation and-flocculation process. The test results showed that the removal rate of CODCr was 24.1%, CODCr was the 88.1mg/L. It reached effluent standard.


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Mohammad Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Kumar Biswas

Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.


Sign in / Sign up

Export Citation Format

Share Document